首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Material flow analysis (MFA) is an evaluation technique that systematically identifies the flows and stocks of materials within predefined spatial and temporal boundaries. In this paper, the steel resources in Korea are investigated using dynamic MFA. Iron ore and steel scrap are added as raw material components during the production processes of steel, which is then used in a variety of product groups such as construction products, transportation equipment, machinery/metal products, electrical/electronic devices, and other products through fabrication and manufacturing processes. When such product groups are discarded, they are either recycled or landfilled. With consideration for the lifetimes of various product groups in conjunction with steel resource flows in Korea, dynamic MFA is conducted on the flows of steel stock change and annual scrap generation. By 2020, these two flows are expected to increase by as much as 40% and 30%, respectively, compared to 2008, with transportation equipment, in particular, envisaged to experience high growth. At the current recycling rate, however, it will be hard to meet future scrap demand. According to the scenario analysis, 100% of this future scrap demand can be supplied domestically if the recycling rate is increased to over 70% for all product groups, except construction products and transportation equipment, which already have high recycling rates. By 2020, the reduction in scrap importation costs is projected to offer a financial gain of 2.3 billion dollars.  相似文献   

2.
Zinc is one of the most widely applied nonferrous metals in China. Study on the applications and recurrent situation of zinc resources is of great strategic importance for the sustainable development of China's economy. In this paper, a dynamic material flow analysis (MFA) method has been adopted to analyze quantificationally zinc resources in China, as well as to analyze and predict the quantity of zinc product scrap and their recycling situation. The weighted average method was applied to calculate average lifetimes of six major zinc products in China. The average lifetimes of battery, zinc oxide, zinc die-casting alloys, zinc material products, galvanized zinc and brass are 0.17, 5.3, 11.1, 12, 21 and 30 years, respectively. Assuming the lifetime of zinc product group obeys the Weibull distribution and the consumption of zinc products varies linearly with time, the future consumption and scrap generation of zinc products will increase continuously. It is expected that they would increase from 49% to 76% during 2004–2020, respectively. Assuming the recycling rate remains unchanged with time, the zinc old scrap index, both the theoretical and actual values, would continue increasing in China. The values are expected to reach 0.402 and 0.076 by 2020, respectively. Therefore, the regeneration resource of depreciated zinc is actually insufficient in China. According to the scenario analysis, the actual value of old scrap indexes is positively correlated with the recycling rate of zinc products. Because galvanized products are the largest consumption area of zinc products in China, the influence of their recycling rate on old scrap index is obviously larger than other zinc products. Through the analysis, this paper suggests that the increase of the recycling rate of zinc products could not only improve to a certain degree China's relative shortage of zinc resources, but greatly relive the supply pressure of zinc in the world.  相似文献   

3.
Primary steelmaking involves CO2-intensive processes, but the expansion of secondary steel production is limited by the global availability of steel scrap. The present work examines global scrap consumption in the past (1870–2012) and future scrap availability (2013–2050) based on the historical trend. The results reveal that (i) historically, the consumption of old scrap has been insufficient compared with the amounts of discarded steel, and (ii) based on historical scrap consumption, the future availability of scrap will not be sufficient to satisfy the two assumed cases of steel demand. Primary steelmaking is expected to remain the dominant process, at least up until 2050. Under the reference-demand case of 2.19 billion tons in crude steel production by 2050, the total production of pig iron and direct reduced iron could reach 1.35 billion tons. Consumption of old scrap could reach 0.76 billion tons. Because the availability of scrap will be limited in the context of the global total, it is important to research and develop innovative low-carbon technologies for primary steelmaking and to explore their economic viability if we are to aim for achieving large reductions in CO2 emissions from the iron and steel industry.  相似文献   

4.
The flows of paper are analyzed throughout the papermaking processes, with the year 2007 and Korea defined as the system boundaries. In practice, the statistical data on the production, import and export of paper or pulp can be collected with relative ease from the government and industrial associations. However, the input data regarding the volumes of pulp and wastepaper used in different paper products, such as newsprint, printing papers, sanitary and household papers, specialty papers, and corrugating board base, are difficult to obtain because such information is generally kept confidential in the course of corporate operations.The production processes of paper products in Korea are modeled using information on raw materials, their compositions and production yields of products in order to identify and quantify the amounts of pulp and wastepaper used in each paper product. The material flows of paper are then analyzed based on the calculation model derived from the correlation of input and output flows between the individual processes throughout the entire paper lifecycle. Accuracy analysis using both mean absolute error (MAE) and mean absolute percent error (MAPE) is conducted to verify the amounts of pulp and wastepaper calculated from the proposed model against the volumes of domestically consumed pulp and wastepaper provided in the national statistics. Although the calculated values for the past (i.e., the 1980s and 1990s) differ to some degree from the statistical values, the data for the 2000s have a relatively higher level of accuracy, with the MAPE of the total pulp and recycling volume at 5.39% and 5.30%, respectively, thus validating the adequacy of the proposed modeling method. The proposed calculation model can be effectively used in the material flow analysis (MFA) of paper to reduce the burden of data collection and obtain relatively accurate results.  相似文献   

5.
China is the largest steel producer and consumer around the world. Quantifying the Chinese steel flow from cradle to grave can assist this industry to fully understand its historical status and future options on production route transformation, capacity planning, scrap availability, resource and energy consumption. With the help of the systematic methods combined dynamic MFA (material flow analysis) with scenario analysis, the Chinese steel cycle during the first half of the 21st century was quantified and several thought-provoking conclusions were draw. In the past decade, lots of pig iron or molten iron was fed into EAF (electric arc furnace) and the scrap usage of EAF fluctuated slightly. Thus, the real scrap-EAF route share is much lower than the EAF production share. On the other hand, we reconfirmed that the scrap supply in China will rise significantly in the future. Meanwhile, the secondary production route share will grow sharply and exceed primary production share before or after 2050 depending on our options. The scrap recycling rate and construction's lifetime play a vital role in this trend. In the end, an intensive discussion on production capacities’ adjustment and energy and resource consumption was conducted and relative policy suggestions were given. It is worth noting that scrap usage is crucial to future energy saving and emissions reduction of Chinese steel sector and its energy consumption might peak as early as 2015.  相似文献   

6.
Economy-wide material flow accounting and analysis (EW-MFA) is considered a convenient tool for monitoring the vast range of issues related to the consumption of materials. As an increase in recycling is considered a crucial way of decreasing environmental pressures from this consumption, it makes sense to develop an indicator based on EW-MFA which would incorporate recycling flows. A prominent example of such an indicator is the cyclical use rate, which was developed by the Japanese Fundamental Plan for Establishing a Sound Material-Cycle Society.We calculated this indicator for the Czech Republic for 2002–2011 and proved that it can also be calculated for countries other than Japan, even though we encountered some unclear methodological issues related to specific features of the Czech waste management system. We further developed two modifications of the indicator taking into consideration that one purpose of the cyclical use rate is to express the ratio of consumption of secondary (recycled) materials and primary raw materials. We discussed these modifications and showed that overall cyclical use rate in the Czech Republic lags behind Japan both in terms of absolute value and trend development, although the indicator is higher for biomass in the Czech Republic. We also showed that this unfavorable evaluation is in contradiction with some classic waste indicators, such as treatment of waste by main treatment methods which is favorably evaluated in the Czech Republic. We concluded that it would be advisable to analyze measures for increasing recycling rates introduced by Japan and assess their possible transposition into the Czech Republic's institutional and legal framework for waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号