首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The U.S. Department of Energy has generated liquid wastes containing radioactive and hazardous chemicals throughout the more than forty years of operation at its Hanford site in Washington State. Many of the waste components, including nitrate and carbon tetrachloride (CCl4), have been detected in the Hanford groundwater. In-situ bioremediation of CCl4 and nitrate is being considered to clean the aquifer. Preliminary estimates indicate that this technology should cost significantly less than ex-situ bioremediation and about the same as air stripping/granular activated carbon. In-situ bioremediation has the advantage of providing ultimate destruction of the contaminant and requires significantly less remediation time. Currently, a test site is under development. A computer-aided design tool is being used to design optimal remediation conditions by linking subsurface transport predictions, site characterization data, and microbial growth and contaminant destruction kinetics.  相似文献   

2.
During the past decade, various promising technologies have been developed for the decontamination of groundwater insitu which do not require long-term pumping or high energy consumption. One approach is to use funnel and gate technology. In the case described here, the combination of adsorption of contaminants on granular activated carbon (GAC) and its biodegradation is applied to considerably extend the operating time of the filling material in the barrier system. Monochlorobenzene (MCB), a recalcitrant groundwater contaminant under anaerobic conditions, undergoes high-capacity adsorption on GAC up to about 450 mg per gram. Aerobic enrichment cultures, obtained from a contaminated aquifer, were able to mineralize initially adsorbed MCB. In respirometer experiments the rate of carbon dioxide formation was dependent on the equilibrium concentration of MCB. The oxygen consumption of activated carbon by means of autoxidative reactions may delay aerobic biodegradation in GAC filters. The oxygen uptake of pristine activated carbon amounted to 5.6 mg per gram GAC in laboratory column experiments. When GAC was pre-loaded with MCB, autoxidation rates were considerably reduced. Hence, it is advisable not to stimulate the biodegradation of MCB by oxygen supply in GAC biobarriers until after an initial period of solely sorptive MCB removal from the groundwater flow.  相似文献   

3.
Medical examinations and dust analysis showed that illness of workers, predominently asthma, in an enclosed waste sorting plant in Denmark, was probably related to high particulate levels containing bacteria and endotoxins derived from decaying waste. Modification of the plant to enclose conveyors and install vacuum cleaning systems to reduce dust levels led to significant reductions in airborne bacteria and the nearly complete elimination of endotoxins. However, fungi concentrations were not reduced.  相似文献   

4.
Smoldering combustion, commercially available as the Self‐sustaining Treatment for Active Remediation (STAR) technology, is an innovative technique that has shown promise for the remediation of contaminant source zones. Smoldering combustion is an exothermic reaction (net energy producing) converting carbon compounds and an oxidant (e.g., oxygen in air) to carbon dioxide, water, and energy. Thus, following ignition, the smoldering combustion reaction can continue in a self‐sustaining manner (i.e., no external energy or added fuel input following ignition) as the heat generated by the reacting contaminants is used to preheat and initiate combustion of contaminants in adjacent areas, propagating a combustion front through the contaminated zone provided a sufficient flux of air is supplied. The STAR technology has applicability across a wide‐range of hydrocarbons in a variety of hydrogeologic settings; however, there are limitations to its use. Impacted soils must be permeable enough to allow a sufficient flux of air to the combustion front and there exists a minimum required concentration of contaminants such that the soils contain sufficient fuel for the reaction to proceed in a self‐sustaining manner. Further limitations, as well as lessons learned and methods to mitigate these limitations, are presented through a series of case studies. In summary, the successful implementation of STAR will result in >99 percent reduction in contaminant concentrations in treated areas, limited residual contaminant mass, reduced groundwater contaminant mass flux which can be addressed through monitored natural attenuation; and an enhanced site exit strategy, reduced lifecycle costs, and reduced risk. ©2016 Wiley Periodicals, Inc.  相似文献   

5.
In the early 1990s, a soil removal action was completed at a former disposal pit site located in southern Michigan. This action removed waste oil, cutting oil, and chlorinated solvents from the unsaturated zone. To contain groundwater contaminant migration at the site, a groundwater pump‐and‐treat system comprised of two extraction wells operating at a combined flow of 50 gallons per minute, carbon treatment, and a permitted effluent discharge was designed, installed, and operated for over 10 years. Groundwater monitoring for natural attenuation parameters and contaminant attenuation modeling demonstrated natural attenuation of the contaminant plume was adequate to attain site closure. As a result of incomplete contaminant source removal, a rebound of contaminants above the levels established in the remedial action plan (RAP) has occurred in the years following system shutdown and site closure. Groundwater concentrations have raised concerns regarding potential indoor air quality at adjacent residential properties constructed in the past 9 to 10 years. The only remedial option available in the original RAP is to resume groundwater pump‐and‐treat. To remediate the source area, an alternate remediation strategy using an ozone sparge system was developed. The ozone sparge remediation strategy addresses the residual saturated zone contaminants beneath the former disposal pit and reestablishes site closure requirements without resumption of the pump‐and‐treat system. A pilot study was completed successfully; and the final system design was subsequently approved by the Michigan Department of Environmental Quality. The system was installed and began operations in July 2010. As of the January 2011 monitoring event, the system has shown dramatic improvement in site contaminant concentrations. The system will continue to operate until monitoring results indicate that complete treatment has been obtained. The site will have achieved the RAP objectives when the system has been shut down and meets groundwater residential criteria for four consecutive quarters. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   

7.
In the European Waste List (2000/532/EC as amended) the ash of municipal waste incineration is defined as a so called mirror entry. This waste can be classified as hazardous or non-hazardous depending on the content of hazardous substances and other risk properties. For the assignment of waste in mirror entries, 14 criteria are defined. One of the criteria is H14 “ecotoxic”. In the presented study, the ecotoxicological potential of 12 ashes from different incineration plants has been assessed using biological test systems. The test battery included aquatic tests with eluates (algae, daphnids, and luminescent bacteria) and terrestrial tests with solid waste (plants, earthworms and bacteria). The test results revealed a clear ecotoxicological hazard potential for some of the MWI ashes. Despite the fact that fresh ashes were several times more toxic than aged ashes both groups did not differ consistently in terms of toxicity. The results show also that there is no correlation between the biological effects and the analyzed chemical compounds of the ash samples.  相似文献   

8.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

9.
Real soils contaminated with a mixture of polychlorinated biphenyls were thermally decontaminated in a laboratory scale thermal desorption apparatus, under different operating conditions including two operating pressures (P= 0.01 and 0.1 MPa), different sample masses (80-320 g), carrier gas flow rates (0-30-280 Nl h(-1)) and two initial contamination levels. A standard European soil artificially contaminated with 4-chlorobiphenyl was decontaminated using a thermogravimetric analyser (TGA). The same parametric study as cited earlier was performed. With both techniques, the extent of decontamination was studied as a function of temperature during the heating programs (2-3 degrees C min(-1) for the thermal desorption apparatus; 5 degrees C min(-1) for TGA). Only a few differences were noticed between the two techniques. The decontamination starts when the melting temperature of the contaminant is reached (30 degrees C) and is complete before 350 degrees C. Thermogravimetric analysis which does not necessitate any chemical analysis appears to be a very attractive technique to investigate the feasibility of a decontamination and to quickly determine the best operating conditions.  相似文献   

10.
The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.  相似文献   

11.
Raw material supply is essential for all industrial activities. The use of secondary raw material gains more importance since ore grade in primary production is decreasing. Meanwhile urban stock contains considerable amounts of various elements. Photovoltaic (PV) generating systems are part of the urban stock and recycling technologies for PV thin film modules with CdTe as semiconductor are needed because cadmium could cause hazardous environmental impact and tellurium is a scarce element where future supply might be constrained. The paper describes a sequence of mechanical processing techniques for end-of-life PV thin film modules consisting of sandblasting and flotation. Separation of the semiconductor material from the glass surface was possible, however, enrichment and yield of valuables in the flotation step were non-satisfying. Nevertheless, recovery of valuable metals from urban stock is a viable method for the extension of the availability of limited natural resources.  相似文献   

12.
There are many well‐established bioremediation technologies applied commercially at contaminated sites. One such technology is the use of compost material. Composting matrices and composts are rich sources of microorganisms, which can degrade contaminants to innocuous compounds such as carbon dioxide and water. In this article, composting of contaminated soil and sediment was performed on a laboratory bench‐scale pile. Fertilizer was added to increase the nutrient content, and the addition of commercial compost provided a rich source of microorganisms. After maintaining proper composting conditions, the feasibility of composting was assessed by monitoring pH, total volatile solids, total microbial count, temperature, and organic contaminant concentration. The entire composting process occurred over a period of five weeks and resulted in the degradation of contaminants and production of compost with a high nutritional content that could be further used as inocula for the treatment of hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

13.
About 70% of all of the liquid and solid hazardous wastes commercially incinerated in the United States is being burned in cement kilns. The process inevitably results in residues, primarily heavy metals, entering the clinker and waste dusts (cement kiln dust, CKD) produced by these kilns. The effects of this trend on the nature and chemical composition of cement, actual and future, are discussed. The wastes burned by cement kilns are expected to increasingly have higher levels of heavy metals per Btu. In general, the effects are very simple to describe but have as yet unknown consequences. The present American Society for Testing and Materials (ASTM) standard does not effectively control hazardous waste burning residues in Portland Cement.The regulatory and economic pressures on CKD disposal suggest that much of it, and its heavy metal residues, will, in time, end up in the clinker and the resultant cement. The end point to the trend is the ability to make cement that passes the performance specifications while containing high levels of heavy metals. The only other alternative is to maximize the levels of heavy metals in the CKD, minimize the amount of CKD, and dispose of its as a hazardous waste.It is recommended that an effort to correlate heavy metal levels in clinker with adverse effects be undertaken, a new standard for cement containing hazardous and other waste residuals be developed, and labeling be required.  相似文献   

14.
Accident risks in waste treatment were studied at five sanitary landfills, two plants using mainly manual sorting and one incineration plant in southern Finland. Work hazards were detected by means of safety analysis. In addition, accident statistics were used. Work safety problems were found at all work stages. At the sanitary landfills, the major safety problems were posed by operation of the compactor or other machinery and by hazardous wastes. In waste sorting, common problems are odour and dust, lacerations and back injuries. Falling into the waste compactor or paper silos may cause fatal injury and its probability was also high. The highest noise level measured was 97 dB(A). In waste incineration, the most serious hazards were caused by fires, clogging of the funnels and cleaning of the grate. Most deficiencies in work safety can be remedied at a moderate price. The corrective measures involve technical solutions, working methods, supervision, training and occupational health services. The accident rates for workers in the four waste treatment plants were slightly lower than the average for industry.  相似文献   

15.
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability.  相似文献   

16.
This paper uses a life-cycle assessment (LCA) framework to characterize comparative environmental impacts from the use of virgin aggregate and recycled materials in roadway construction. To evaluate site-specific human toxicity potential (HTP) in a more robust manner, metals release data from a demonstration site were combined with an unsaturated contaminant transport model to predict long-term impacts to groundwater. The LCA determined that there were reduced energy and water consumption, air emissions, Pb, Hg and hazardous waste generation and non-cancer HTP when bottom ash was used in lieu of virgin crushed rock. Conversely, using bottom ash instead of virgin crushed rock increased the cancer HTP risk due to potential leachate generation by the bottom ash. At this scale of analysis, the trade-offs are clearly between the cancer HTP (higher for bottom ash) and all of the other impacts listed above (lower for bottom ash). The site-specific analysis predicted that the contaminants (Cd, Cr, Se and Ag for this study) transported from the bottom ash to the groundwater resulted in very low unsaturated zone contaminant concentrations over a 200 year period due to retardation in the vadose zone. The level of contaminants predicted to reach the groundwater after 200 years was significantly less than groundwater maximum contaminant levels (MCL) set by the US Environmental Protection Agency for drinking water. Results of the site-specific contaminant release estimates vary depending on numerous site and material specific factors. However, the combination of the LCA and the site specific analysis can provide an appropriate context for decision making. Trade-offs are inherent in making decisions about recycled versus virgin material use, and regulatory frameworks should recognize and explicitly acknowledge these trade-offs in decision processes.  相似文献   

17.
Eight kinds of biodegradable plastics were compared for their degradability in controlled laboratory composting conditions. A thin film of each plastic was mixed into the composting material, and weight-loss degradability was calculated from the weight changes of the film during composting. It was found that weight-loss degradability strongly depended on the specific kind of biodegradable plastic; two were very high, four moderate, and the remaining two very slight. The most easily degradable plastic degraded by as much as 81.4% over 8 days of composting. By comparing the weight-loss degradability with ultimate degradability, which is defined as a molar ratio of carbon loss as CO2 to the carbon contained in the biodegradable plastic, the order of the ease of degradation of the biodegradable plastics differed. Received: February 7, 2000 / Accepted April 14, 2000  相似文献   

18.
以钛箔为载体,采用溶胶-凝胶法及浸渍-烘焙-煅烧法制备了负载型TiO2薄膜,并进行了SEM,EDS,XRD表征。探讨了TiO2薄膜对气态偏二甲肼的光催化降解效果,并对比研究了不同紫外光源、不同初始浓度对气态偏二甲肼降解效果的影响。实验结果表明:TiO2均匀负载在钛箔上且为多孔状的薄膜;偏二甲肼质量浓度为877 mg/m3时,反应17 min后偏二甲肼的降解率为99.99%,500 mg/m3时反应60 min后偏二甲肼的矿化率达到41.58%。  相似文献   

19.
Because remediation techniques and technologies are themselves generally viewed as contaminant source by hazardous waste laws and regulations, permits are required to use them, even if it is only to contain or remove a site's principal contaminants. Referring to such major environmental laws as the Clean Air Act, the Clean Water Act, RCRA, TSCA, and CERCLA, this article outlines the steps needed to translate cleanup projects into the appropriate permits.  相似文献   

20.
Anthropogenic Calcium Particles Observed in Beijing and Qingdao, China   总被引:2,自引:0,他引:2  
Analysis of individual particles collected at Beijing in northern China revealed that particles abundant in calcium (Ca) always constituted a large fraction of mineral particles in the urban atmosphere. The particles were characterized by cubic morphologies. The major mineral element in the particles was Ca and few or no other mineral elements were detected. A large number of the particles were in the range of diameter <1 μm, where common natural mineral particles were rarely detected. The contribution of the Ca particles to the volume of total mineral particles greatly exceeded that of other mineral particles during non-dust-storm periods and was comparable to that during dust-storm periods. Reagent film tests showed that particulate sulfate and nitrate formation on the Ca particles was similar to that on common mineral particles. These results indicate that a large portion of Ca in the atmospheric particulate matter in Beijing was from anthropogenic sources rather than from natural sources, and the anthropogenic Ca particles acted as a significant medium for the formation of sulfate and nitrate. Similar particles were also detected at Qingdao, a coastal city in northern China. Data of a dust storm event showed that Ca-abundant particles from East China arrived there and moved out of the continent, similarly to Asian dust storm particles, suggesting possible contributions of anthropogenic Ca even in Asian dust storm samples in the downstream areas. Therefore, Ca may not be a good indicator of Asian dust from natural sources. However, the Ca particles, due to their unique shapes and elemental compositions, may provide an indicator for the atmospheric dispersion of anthropogenic particulate matters in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号