首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of landfill capacity, forthcoming EU waste disposal and landfill management legislation and the use of non-renewable and energy intensive natural resources for the end-treatment of old landfills increase pressures to develop new landfill management methods. This paper considers a method for the end-management of old landfills in Finland, which is based on the utilization of forest and paper industry waste flows, wastes from paper recycling (de-inking) and wastes from forest industry energy production. Fibre clay wastes from paper mills, de-inking sludges from de-inking of recovered waste paper and incineration ash from forest industry power plants serve to substitute the use of natural clay for the building of landfill structures for closed landfills. Arguably, this method is preferable to existing practices of natural clay use for landfill building, because it (1) substitutes non-renewable natural clay, (2) consumes less energy and generates less CO2 emissions than the use of natural clay, and (3) eliminates considerable amounts of wastes from paper production, paper consumption and from forest industry energy production. Some difficulties in the application of the method are considered and the waste flow utilization is incorporated into a local forest industry recycling network.  相似文献   

2.
Solid waste recycling and recovery approach can be a sustainable and effective waste management system in many growing cities of the least developed countries. In the course of achieving proper solid waste management, a lot of efforts in these countries have, however, been focused more on collection and disposal and ignored waste recycling which can result into income generation, employment creation and reduction of the waste quantities that will finally require disposal in the existing municipal landfills or disposal sites. This paper reports the findings of a study on solid waste recycling in a selected semi-planned settlement in Dar es Salaam City, Tanzania. The objective of the study was to describe the existing solid waste management in the study area with a view to identifying the waste generation rates, types of the wastes and determine the amount of waste from the settlement that can be recycled for the purpose of income generation and reduction of the total amount of waste to be disposed of. Findings from this study revealed that waste generation rate in the study area was 0.36 kg per person per day, and that out of the 14 600 kg of recyclable waste generated per year, 8030 kg or 55% can be recycled and generate a per capita income of Tsh 834 000 for waste recyclists which is more than twice the official minimum annual wage (Tsh 360 000) in Tanzania at the time of the study. The study also revealed that effective waste recycling in the study area would result in the reduction of the total waste that need to be transported for final disposal by 11%.  相似文献   

3.
Global disposal strategies for waste cathode ray tubes   总被引:1,自引:0,他引:1  
The collection and management of waste electrical and electronic appliances around the world, and the possible negative environmental consequences have been an issue of current debate. Cathode ray tubes (CRTs) used as display screen for computer monitors and televisions contains large quantities of lead, estimated at between 0.5 and 4 kg, depending on the size of the CRT and has been identified as the most polluting of all electronic waste components. Having failed the tests used in the toxicity characterization of solid wastes, CRTs have been declared ‘hazardous’ and subsequently banned from landfills and incinerators in most developed countries. Presently, large quantities of CRTs are generated globally with only few developed countries having effective take back and sound management program. Meanwhile, large quantities of CRT-containing devices are being moved across frontiers into developing countries in the name of ‘reuse’ and ‘bridging the digital divide’. With near absence of recycling infrastructure for electronic wastes in most developing countries, waste CRTs are disposed of with MSW at open dumps and unsanitary landfills. This paper reviews the current practices in the management of CRTs around the world, with emphasis on the role of regulations, availability of recycling infrastructure, recycling/reuse routes, and export into developing countries. Inappropriate disposal of waste CRTs creates the opportunity for large-scale environmental contamination with heavy metals, especially lead. Appropriate disposal routes are required globally in the management of CRTs in order to mitigate environmental contamination and human exposure to toxins.  相似文献   

4.
In policy support of municipal solid waste (MSW) management, life cycle assessment (LCA) can serve to compare the environmental or economic impacts of two or more options for waste processing. The scope of waste management LCAs generally focuses less attention on future developments, e.g., where will recycling take place, and more on the environmental performance of prototypes, e.g., the incineration of all waste compared to recycling. To provide more robust support for Swiss waste glass-packaging disposal, scenarios of Swiss waste glass-packaging are assessed from a life cycle perspective. The scenarios consist in schemes for the disposal of the total amount of Swiss waste glass-packaging, i.e., different combinations of recycling and downcycling in Switzerland or abroad developed in Part I, Meylan et al. (2013). In this article (Part II), the disposal schemes are assessed with respect to eco-efficiency, an indicator that combines total environmental impacts and gross value added in Switzerland. Results show that no policy alternative guarantees environmental impact reductions and gross value added gains under all developments of exogenous constraints. Downcycling to foam glass in Switzerland is not only an environmentally sound disposal option, but it also buffers gross value added losses in case domestic recycling (and thus glass-packaging production in Switzerland) ceases in the future. The substitution of products based on raw materials other than Swiss cullet is the main responsible for change in environmental and economic impacts. Hence, an eco-efficiency maximizing policy should consider the products of disposal schemes. The combination of scenario analysis and eco-efficiency assessment as presented in this paper can be applied to other contexts (i.e., countries, waste fractions).  相似文献   

5.
In Korea due to rapid economical growth followed by urbanisation, breakage of large traditional families into small nuclear families, continuous changes in equipment features and capabilities causes tremendous increase in sale of new electrical and electronic equipment (EEE) and decrease in sale of used EEE. Subsequently, the ever-increasing quantity of waste electrical and electronic equipment (WEEE) has become a serious social problem and threat to the environment. Therefore, the gradual increase in the generation of WEEE intensifies the interest for recycling to conserve the resources and protect the environment. In view of the above, a review has been made related to the present status of the recycling of waste electrical and electronic equipment in Korea. This paper describes the present status of generation and recycling of waste electrical and electronic equipment, namely TVs, refrigerators, washing machines, air conditioners, personal computers and mobile phones in Korea. The commercial processes and the status of developing new technologies for the recycling of metallic values from waste printed circuit boards (PCBs) is also described briefly. Since 1998, three recycling centers are in full operation to recycle WEEE such as refrigerators, washing machines and air conditioners, having the total capacity of 880,000 units/year. All waste TVs are recently recycled on commission basis by several private recycling plants. The recycling of waste personal computers and mobile phones is insignificant in comparison with the amount of estimated obsolete those. Korea has adopted and enforced the extended producer responsibility (EPR) system. Korea is making consistent efforts to improve the recycling rate to the standards indicated in the EU directives for WEEE. Especially environmentally friendly and energy-saving technologies are being developed to recycle metal values from PCBs of WEEE.  相似文献   

6.
Changes in the trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling in the United States. In response to these challenges, new and innovative approaches to automobile recycling are being developed. This paper presents the findings of a recent study to examine the impacts of these changes on the life cycle energy consumption of automobiles and on the quantity of waste that must be disposed of. Given the recycle status quo, trends in material composition and the viability of recycling the non-metallic components of the typical automobile are of secondary importance when compared to the energy consumed during the life of the automobile. The energy savings resulting from small changes in the fuel efficiency of a vehicle overshadow potential energy losses associated with the adoption of new and possibly non-recyclable materials. Under status quo conditions, the life cycle energy consumed by the typical automobile is projected to decrease from 599 million Btus in 1992 to 565 million Btus in 2000. Energy consumed during the manufacture of the typical car will increase from about 120 to 140 million Btus between 1992 and 2000, while energy used during vehicle operation will decrease from 520 to 480 million Btus. This study projects that energy saved at the recycle step will increase from 41 million Btus in 1992 to 55 million Btus in 2000. This study also investigated the energy impacts of several potential changes to the recycle status quo, including the adoption of technologies to retrieve the heat value of ASR by incineration and the recycle of some or all thermoplastics in the typical automobile. The study estimates that under optimistic conditions —i.e., the recycling of all thermoplastics and the incineration with heat recovery of all remaining ASR —about 8 million Btus could be saved per automobile —i.e., an increase from about 55 to 63 million Btus. In the more realistic scenario —i.e., the recycling of easy-to-remove thermoplastic components (bumper covers and dash-boards) —the potential energy savings are about 1 million Btus per vehicle. It is estimated that the annual quantity of ASR in the United States could be reduced from about 5 billion pounds to as little as 1 billion pounds of ash if all ASR is incinerated. Alternatively, ASR quantity could be reduced to about 4 billion pounds if all thermoplastics in automobiles are recycled. However, in the case of recycling only thermoplastic bumper covers and dashboards, the quantity of ASR would be reduced by only 0.2 billion pounds. A significant reduction or increase in the size of the ASR waste stream will not in itself have a large impact on the solid waste stream in the United States.  相似文献   

7.
What municipal recycling rate is socially optimal? One credible answer would consider the recycling rate that minimizes the overall social costs of managing municipal waste. Such social costs are comprised of all budgetary costs and revenues associated with operating municipal waste and recycling programs, all costs to recycling households associated with preparing and storing recyclable materials for collection, all external disposal costs associated with waste disposed at landfills or incinerators, and all external benefits associated with the provision of recycled materials that foster environmentally efficient production processes. This paper discusses how to estimate these four components of social cost to then estimate the optimal recycling rate.  相似文献   

8.
Sanitary landfilling is considered to be the most appropriate means of final disposal of solid wastes. Currently in Tanzania, the cheapest method of developing a landfill is by making use of natural depressions or former borrow pits and mine pits. This paper examines the impacts associated with the relocation of a waste disposal site from a crude disposal site at Vingunguti to a new landfill site at New MECCO quarry in Kunduchi area, both in Dar es Salaam, Tanzania. The paper focuses on the fate of scavenging and solid waste recycling which are currently taking place at Vingunguti site and mining as well as food vending activities at the proposed new landfill site. Scavenging and waste recycling were found to be important sources of income for some individuals in the city. Various items collected for recycling were found to be an important source of raw materials for some industries in Dar es Salaam. A total of 94% of all the miners were entirely dependent on stone mining and crushing as a sole means of income generation, and 68% of the miners had practised this activity for between 1 and 9 years. Finally the paper recommends that, selection of a waste disposal site should favour abandoned mines or borrow pits rather than operational ones. It also recommends that, waste recycling and scavenging be accommodated in other stages of the waste stream since they can not be practised at a sanitary landfill.  相似文献   

9.
With the annual increase in waste generation and heavy reliance on landfilling as disposal, method in Malaysia, it is just a matter of time before significant problems of space limitations, health, and environmental issues hit the nation severely. This paper attempts to develop an overview on solid, waste recycling in Malaysia at the most basic level of a community or nation which is the household, unit. Households are the main primary source of municipal solid waste in Malaysia, consisting of, recyclable materials at most 70% to 80% of the total waste composition as found placed in the, landfills. Overview on the existing household solid waste recycling policy and program status in, Malaysia is relevant in enhancing solid waste management measure from recycling perspective. Despite the high potential and opportunities for solid waste recycling, wastes are still simply being, dumped in an open area of ground without any attempt for recovery and recycling. Comparing to, recycling rates of neighboring countries, Malaysia is falling back at merely 5% which proves how, uncommon recycling practice is. The government is committed to significantly improve the national's, solid waste management services especially in waste minimization. Fortunately the emphasis on, recycling as a sustainable waste management strategy has taken a shift in paradigm as wastes, separation and recycling are part of the major changes in the current policy implementation. With, issues and challenges in recycling practice that were highlighted in this context especially from the, aspects of information availability and other loopholes within solid waste management policies and, related recycling program within the community, the question on whether the goals in 2020 can be, met remains unsure of but there is a possibility for a successful implementation of sustainable solid, waste management particularly in recycling.  相似文献   

10.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

11.
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.  相似文献   

12.
The current status of the treatment and disposal of hazardous wastes in China is summarized on the basis of the results of the Declaring and Registration Project initiated nationally in 1995. A principle framework for the sound management of hazardous wastes is proposed, which includes three levels of technical solutions. Large-scale enterprises are encouraged to recycle, to treat, and to dispose of wastes by means of constructing facilities, and to have their extra capacities available to the public for a reasonable fee. Municipal governments, provincial governments, and the Central Government are to plan and construct centralized facilities to recycle, treat, and dispose of wastes. For a solution at the manufacturing level, recycling is identified as the main approach. Centralized facilities at the municipal level will mainly focus on special wastes that are unsuitable to transport and store, such as hospital waste, and for the technical solution at this level, incineration and recycling are identified as the main approaches. For the technical solution at the provincial and national levels, landfill and incineration are identified as the main approaches. Based on this principle and the current available data on hazardous wastes, a preliminary plan for the spatial distribution of cross-provincial centralized treatment and disposal facilities of hazardous wastes is presented. The construction of approximately nine cross-provincial comprehensive facilities is proposed. A priority list for the construction of these planned facilities is also presented.  相似文献   

13.
Medical waste management in Korea   总被引:2,自引:0,他引:2  
The management of medical waste is of great importance due to its potential environmental hazards and public health risks. In the past medical waste was often mixed with municipal solid waste and disposed of in residential waste landfills or improper treatment facilities (e.g. inadequately controlled incinerators) in Korea. In recent years, many efforts have been made by environmental regulatory agencies and waste generators to better manage the waste from healthcare facilities. This paper presents an overview of the current management practices of medical waste in Korea. Information regarding generation, composition, segregation, transportation, and disposal of medical wastes is provided and discussed. Medical waste incineration is identified as the most preferred disposal method and will be the only available treatment option in late 2005. Faced with increased regulations over toxic air emissions (e.g. dioxins and furans), all existing small incineration facilities that do not have air pollution control devices will cease operation in the next few years. Large-scale medical waste incinerators would be responsible for the treatment of medical waste generated by most healthcare facilities in Korea. It is important to point out that there is a great potential to emit air toxic pollutants from such incinerators if improperly operated and managed, because medical waste typically contains a variety of plastic materials such as polyvinyl chloride (PVC). Waste minimization and recycling, control of toxic air emissions at medical waste incinerators, and alternative treatment methods to incineration are regarded to be the major challenges in the future.  相似文献   

14.
Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper.  相似文献   

15.

Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper.  相似文献   

16.
In the UK, between 4 and 5% of the municipal solid waste stream is composed of clothes/textiles. Approximately 25% of this is recycled by companies such as the Salvation Army Trading Company Limited (SATCOL) who provide a collection and distribution infrastructure for ‘donated’ clothing and shoes. Textiles can be reused or undergo a processing stage and enter a recycling stream. Research was conducted in order to quantify the energy used by a reuse/recycling operation and whether this resulted in a net energy benefit. The energy footprint was quantified using a streamlined life cycle assessment (LCA), an LCA restricted in scope in order to target specific aspects of the footprint, in this case energy consumption. Taking into account extraction of resources, manufacture of materials, electricity generation, clothing collection, processing and distribution and final disposal of wastes it was demonstrated that for every kilogram of virgin cotton displaced by second hand clothing approximately 65 kWh is saved, and for every kilogram of polyester around 90 kWh is saved. Therefore, the reuse and recycling of the donated clothing results in a reduction in the environmental burden compared to purchasing new clothing made from virgin materials.  相似文献   

17.
Proper disposal of construction and demolition wastes (CDW) has received wide attention recently due to significantly large quantities of waste streams collected from razed or retrofitted buildings in many metropolitan regions. Burning the combustible fractions of CDW (CCDW) and possibly recovering part of the heat content for economic uses could be valuable for energy conservation. This paper explores the oxidation kinetics of CCDW associated with its ash characterization. Kinetic parameters for the oxidation of CCDW were numerically calculated using thermal gravimetric analysis (TGA) and the resultant rate equations were therefore developed for illustrating the oxidation processes of CCDW simultaneously. Based on three designated heating rates, each of the oxidation processes can be featured distinctively with five different stages according to the rate of weight change at the temperature between 300 K and 923 K. In addition, Fourier transform infrared (FTIR) spectroscopy was employed, associated with a lab-scale fixed-bed incinerator for monitoring the composition of flue gas. Carbon dioxide (CO2) was found as a major component in the flue gas. The fuel analysis also included an ash composition analysis via the use of X-ray powder diffraction (XRD), atomic absorption (AA) spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). The ash streams were identified as nonhazardous materials based on the toxicity characteristic leaching procedure (TCLP). Overall, the scientific findings gained in this study will be helpful for supporting a sound engineering design of real-world CCDW incineration systems.  相似文献   

18.
In developing countries, several unregulated landfills exist adjacent to large cities, releasing harmful contaminants to the underlying aquifer. Normally, landfills are constructed to hold three types of waste, namely hazardous waste, municipal solid waste, and construction and demolition waste. Hazardous waste and municipal solid waste landfills are of greater importance as these pose greater hazard to groundwater, in comparison with landfills holding waste from construction and demolition. The polluting landfills need to be prioritized to undertake necessary control and remedial measures. This paper assesses existing site hazard rating systems and presents a new groundwater contamination hazard rating system for landfills, which can be used for site prioritization. The proposed system is based on source-pathway-receptor relationships and evaluates different sites relative to one another. The system parameters have been selected based on literature. The Delphi technique is used to derive the relative importance weights of the system parameters. The proposed system is compared with nine existing systems. The comparison shows that the site hazard scores produced by the existing systems for hazardous waste, municipal solid waste, and construction and demolition waste landfills are of the same order of magnitude and tend to overlap each other but the scores produced by the proposed system for the three types of landfills vary almost by an order of magnitude, which shows that the proposed system is more sensitive to the type of waste. The comparison further shows that the proposed system exhibits greater sensitivity also to varied site conditions. The application of different systems to six old municipal solid waste landfills shows that whereas the existing systems produce clustered scores, the proposed system produces significantly differing scores for all the six landfills, which improves decision making in site ranking. This demonstrates that the proposed system makes a better tool for prioritization of landfills for adopting control measures and remediation.  相似文献   

19.
States differ in the components or solid waste management activities which they include when determining solid waste reduction and recycling rates. Thus, when attempting to draw comparisons among states, confusion arises in two ways: (1) use of two types of rates; and (2) use of different components or activities when calculating a given rate. This paper presents a mathematical basis for understanding the impacts on rate calculations when variations occur in the components and activities included in those calculations. Estimates of the incremental changes occurring in the rate calculations when incineration or selected components such as yard waste, construction and demolition wastes, and junked automobiles, are added to a base of municipal solid waste constituents are found using national data. Finally, the achieved rates reported by states counting different combinations are compared.  相似文献   

20.
This research was conducted with the objective of determining and evidencing the social and environmental/economic results from the implementation of a reverse logistics program providing for the recycling, reuse, and, when necessary, final, environmentally correct disposal of post‐consumption products and product wastes by a multinational manufacturer of computer peripherals with an operation based in the city of São Paulo, Brazil. The reverse logistics process (logisticareversa, or, in this paper, LR) was intended to meet the objectives and principles of the regulatory framework defined in the National Solid Waste Policy (PNRS) in Brazil. A single case study was carried out. The results showed that after the adoption of the solid waste management policy, the study company no longer disposed of 1,413,552 kilograms (kg) of materials classified as mixed iron, polystyrene, cardboard, toner powder, and plastic in landfills. The LR process made a profit in two companies: the company surveyed made, in Brazilian reais (R), R$ 9,188,185.51, and the company contracted to carry out the process made, R$ 411,325.97. This latter profit is called by us the “social profit.” The measurement of the environmental/economic, social, and financial results by internalizing the expenses of the LR program into the costs of production shows that reuse and recycling better meets the needs of society and the company than landfilling these post‐consumption materials. Furthermore, the use of cost accounting allows the verification of other goals not indicated in the current model, such as the generation of employment, income, mitigation of environmental problems, and the profit earned by the company contracted to implement the LR process. We also conclude that cost accounting makes it possible to obtain necessary information for decision makers, who are seeking to neutralize environmental impacts and promote sustainable development, thus harmonizing the economic, social, and environmental aspects, to understand the impacts of the LR process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号