首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial aggregate made from waste stone sludge and waste silt   总被引:1,自引:0,他引:1  
In this research, waste stone sludge obtained from slab stone processing and waste silt from aggregate washing plants were recycled to manufacture artificial aggregate. Fine-powdered stone sludge was mixed with waste silt of larger particle size; vibratory compaction was applied for good water permeability, resulting in a smaller amount of solidifying agent being used. For the densified packing used in this study, the mix proportion of waste stone sludge to waste silt was 35:50, which produced artificial aggregate of more compact structure with water absorption rate below 0.1%. In addition, applying vibratory compaction of 33.3 Hz to the artificial aggregate and curing for 28 days doubled the compressive strength to above 29.4 MPa. Hence, recycling of waste stone sludge and waste silt for the production of artificial aggregate not only offers a feasible substitute for sand and stone, but also an ecological alternative to waste management of sludge and silt.  相似文献   

2.
The use of recycled concrete aggregates (RCA) in applications other than road sub-layers is limited by two factors: the high porosity of RCA in comparison with natural aggregates, and the restrictions set forth in standards and building codes. Research efforts aimed at alleviating these restrictions are focused on improving the quality of coarse RCAs by reducing the amount of adhered cement pastes, which is the weakest element in this system and influences the rheological behaviour.This paper presents an analysis of the environmental impacts of the recent mechanical and thermo-mechanical processing techniques which produce high performance RCA by reducing the volume of adhered cement paste. Based on published data, processing scenarios were established. These scenarios permit making rough estimates of energy consumption, CO2 emissions, fines generation and product quality. Using these data and the available emission factors from several countries, an objective comparison was made between these innovating processes and conventional recycling.The production of fines increases from 40% up to as much as 70% as the volume of adhered cement paste on the RCA is reduced. Fuel fed thermo-mechanical process energy consumption, per tonne of recycled aggregate, varies between 36 and 62 times higher than conventional recycling processes. Mechanical processing, combined with microwave heating, increases energy consumption from 3 to a little more than 4 times conventional recycling. Consequently, CO2 emissions released by conventional coarse aggregate production go from 1.5 to 4.5 kgCO2/t, to around 200 kgCO2/t, for that of fossil fuel fed thermo-mechanical treatments.Mechanical and mechanical/microwave treatments appear to have the greatest environmental potential. Notwithstanding, the further development of markets for fines is crucial for reducing environmental loads.  相似文献   

3.
In Tanzania, construction and demolition (C&D) waste is not recycled and knowledge on how it can be recycled especially into valuable products like building materials are still limited. This study aimed at investigating the possibility of recycling the C&D waste (mainly cementitious rubble) into building material in Tanzania. The building materials produced from C&D waste was concrete blocks. The concrete blocks were required to have a load bearing capacity that meets the building material standards and specifications. Eight C&D waste samples were collected from C&D building sites, transported to the recycling site, crushed, and screened (sieved) to get the required recycled aggregates. Natural aggregates were also used as control. The recycled aggregates were tested in the laboratory following the standard methods as specified in Tanzanian standards. The physical, mechanical and chemical characteristics were determined. The physical and mechanical results showed that recycled aggregates were weaker than natural aggregates. However, chemically they were close to natural aggregates and therefore suitable for use in new concrete block production. In the production process, each experiment utilized 100% recycled aggregates for both fine and coarse portions to replace natural aggregates. The Fuller's maximum density theory was used to determine the mix proportions of materials in which a method that specifies concrete mix by system of proportion or ratio was used. The concrete blocks production processes included batching, mixing (that was done manually to get homogeneous material), compacting and moulding by hand machine and curing in water. After 28 days of curing, the concrete blocks were tested in the laboratory on compressive strength, water absorption ratio and density. The results showed that the blocks produced with 100% recycled aggregates were weaker than those with natural aggregates. However, the results also showed that there is a possibility of recycling the C&D waste into building material because 85% of the tested concrete block specimens from recycled aggregates achieved a compressive strength of 7 N/mm2, which is defined as the minimum required load bearing capacity in Tanzania. Therefore, the C&D waste could be a potential resource for building material production for sustainable construction in Tanzania rather than discarding it. Further work should focus on the economic feasibility of production of concrete blocks with recycled aggregates in Tanzania.  相似文献   

4.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

5.
Nowadays, aluminum scrap is traded globally. This has increased the need to analyze the flows of aluminum scrap, as well as to determine the environmental consequences from aluminum recycling. The objective of this work is to determine the greenhouse gases (GHG) emissions of the old scrap collected and sorted for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the GHG emissions (generated and avoided) associated with old scrap recycling within a global market. From the MFA results, we projected that the Spanish demand for aluminum products will be met mainly with an increase in primary aluminum imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the scenario and on the marginal source of primary aluminum considered, the GHG emission estimates varied between −18,140 kg of CO2 eq. t−1 and −8427 of CO2 eq. t−1 of old scrap collected. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the GHG impacts derived from recycling, has become an essential prerequisite to consistent development from a linear toward a circular economy (CE).  相似文献   

6.
The pulp and paper industry is placed in a unique position as biomass used as feedstock is now in increasingly high demand from the energy sector. Increased demand for biomass increases pressure on the availability of this resource, which might strengthen the need for recycling of paper. In this study, we calculate the energy use and carbon dioxide emissions for paper production from three pulp types. Increased recycling enables an increase in biomass availability and reduces life-cycle energy use and carbon dioxide emissions. Recovered paper as feedstock leads to lowest energy use (22 GJ/t) and CO2 emissions (−1100 kg CO2/t) when biomass not used for paper production is assumed to be converted into bio-energy. Large differences exist between paper grades in e.g. electricity and heat use during production, fibre furnish, filler content and recyclability. We found large variation in energy use over the life-cycle of different grades. However, in all paper grades, life-cycle energy use decreases with increased recycling rates and increased use of recovered fibres. The average life-cycle energy use of the paper mix produced in The Netherlands, where the recycling rate is approximately 75%, is about 14 GJ/t. This equals CO2 savings of about 1 t CO2/t paper if no recycled fibres would be used.  相似文献   

7.
This paper examines the 1-year anthropogenic stocks and flows of silver as it progresses from extraction to final disposal on the European continent. The primary flows of silver include production, fabrication and manufacturing, use, and waste management. A substance flow analysis (SFA) was used to trace the flows and inventory data, and mass balance equations were used to determine the quantity of flows. The results reveal that Europe has a low level of silver mine production (1580 Mg Ag/year) and instead relies on silver imports and the recycling of scrap in production and fabrication. In the year 1997, Europe imported 1160 Mg Ag of ore concentrate and 2010 Mg Ag of refined silver, and recycled 2750 Mg Ag of new and old scrap. There is a net addition of 3320 Mg Ag/year into silver reservoirs at the use stage. This is the result of a greater amount of silver entering the system from manufacturing than is leaving the system into waste management. The waste flow with the highest content of silver is municipal solid waste, which contains 1180 Mg Ag/year. In total, 62% of all discarded silver is recycled and 38% is sent to landfills. The results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.  相似文献   

8.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

9.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

10.
The selective collection and recycling of municipal solid waste are presented as stages of an integrated program of solid waste management to minimize the environmental impact of the treatment and final disposal of solid waste. Therefore, this program aims to save natural resources, such as energy and raw materials, in the manufacture of new products and to conserve areas for sites, such as to minimize the use of existing landfill sites, and to minimize the need for new waste treatment sites. A university is composed of educational professionals aware of their societal responsibilities, and, therefore, they play a fundamental role in the management of the university's solid waste. This study presents the design and implementation of a Permanent Selective Collection Program (PSCP) at the Federal University of Itajubá (Universidade Federal de Itajubá, UNIFEI), Itajubá-MG, Brazil. The material requirements for initiating the PSCP have been identified, and an action plan for continuous program improvement, which is initially based on the collection of performance indicator data for the PSCP campus, has been developed. Finally, the data from the PSCP performance indicators and software from the United States Environmental Protection Agency, the Landfill Gas Generation Model (LandGEM) and the Waste Reduction Model (WARM), were used to evaluate the impact of implementing PSCP in terms of energy and the generation of greenhouse gases (GHG). The results were promising, showing that there has been an improvement, since the inception of PSCP in 2006, in separating materials for selective collection, even though paper (41.00 wt%), plastic (6.00 wt%) and organic matter (26.00 wt%) are still highly generated wastes. The WARM simulations for a scenario in which 90% of the waste is sent for recycling resulted in an economy of −7 tCO2 or −74.91 GJ (on an energy basis). The LandGEM (USEPA) simulations estimated 1424.60 kWh of energy in the peak production year.  相似文献   

11.
Disposal of more than 300 tonnes waste glass daily derived from post-consumer beverage bottles is one of the major environmental challenges for Hong Kong, and this challenge continues to escalate as limited recycling channels can be identified and the capacity of valuable landfill space is going to be saturated at an alarming rate. For this reason, in the past ten years, a major research effort has been carried out at The Hong Kong Polytechnic University to find practical ways to recycle waste glass for the production of different concrete products such as concrete blocks, self-compacting concrete and architectural mortar. Some of these specialty glass-concrete products have been successfully commercialized and are gaining wider acceptance. This paper gives an overview of the current management and recycling situation of waste glass and the experience of using recycled waste glass in concrete products in Hong Kong.  相似文献   

12.
The advanced zero emissions power plant (AZEP) project addresses the development of a novel “zero emissions,” gas turbine-based, power generation process to reduce local and global CO2 emissions in a cost-effective way.The key element in AZEP is an integrated MCM-reactor, in which (a) O2 is separated from air by means of a mixed-conducting membrane (MCM), (b) combustion of natural gas occurs in an N2-free environment and (c) the heat of combustion is transferred to air by heat exchange.This paper focuses on the development and testing of the ceramic components of the MCM-reactor (air separation membrane and heat exchangers). For compactness and manufacturability, a module design based on extruded square channel monoliths has been chosen. The manifold design enables gas distribution in a checkerboard pattern. Modules with contact area of >500 m2/m3 have been produced.Results from testing of the modules under close to realistic process conditions agree with model predictions. Extrapolation to AZEP process conditions gives an oxygen production rate of around 37 mol O2/(m3 s), or 15 MW/m3 power density (per net MCM volume). These values correspond to project targets and confirm the feasibility of the AZEP concept.  相似文献   

13.
Environmental concerns are increasing rapidly, and the public and industry are concerned about natural resources. The products are produced to meet the customer's demand as to quality. However, today it is equally important to take into account cost, ecological factors in production and recycling of products. The same way, the dentistry must contribution with a recasting the alloys used to rehabilitation oral.This study evaluated the effect of the condition of Ti (as-received and re-cast) on its mechanical properties, microstructure and fractography. Castings (n = 6) with Ti in the as-received and once recast condition were made in a centrifugal casting machine using a high-purity argon gas. The ultimate tensile strength (UTS), proportional limit (PL) and elongation (EL) of the as-received specimens were evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The fractured specimens were polished down for Vicker's microhardness (VHN) measurement (100 g/15 s) from 25 μm below the cast surface, then at depths of 50, 100, 200 and 500 μm. The microstructures of the alloys were also revealed. Scanning electron microscopy fractography was undertaken for the fractured surfaces after testing. The data from the mechanical tests and hardness were subjected to the Student's t-test and two-way repeated measures ANOVA, respectively. Tukey's test was used for pairwise comparison (α = 0.05). Higher UTS, PL and VHN and lower EL were observed for recast cp Ti. The microstructure was not influenced by recasting, but the mode of fracture was.The use of the recasting procedure can lower the costs of cp Ti castings and can be safely in dentistry.  相似文献   

14.
The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H2O2 and air to the system.The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H2O2 flow rate = 120 mL/h, [Fe(II)] = 7.6 mg/L, pH = 3.75 and air flow rate = 1 m3/h), a 90% mineralization was achieved in 150 min.Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H2O2 was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H2O2 was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process.Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process.  相似文献   

15.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

16.
Substance flow analysis (SFA) of cadmium in Korea was carried out to analyze and predict cadmium flows, stocks, and future flows using both static and dynamic models. Cadmium is widely used in industry due to its strong corrosion and chemical resistance at high temperature, excellent electrical conduction, and low melting-point. Cadmium is produced as a by-product from the production processes for zinc and lead ingots. It is used for Ni–Cd batteries, polyvinylchloride (PVC) stabilizers, alloy products, pigments, and others.This examines the current cadmium flows and stocks using static SFA, and aims in predicting the future cadmium flows and stocks in Korea using dynamic SFA. From the static model, 2820 tonnes of cadmium ingots were produced, 0.04 tonnes imported and 2740 tons exported in Korea in 2009. In addition, 81 tonnes of cadmium were used in the manufacture of cadmium products: 80 tonnes for cadmium alloy products and 1 tonne for others. Finally, 175 tonnes of cadmium were imported into Korea for Ni–Cd batteries, 140 tonnes for PVC stabilizers, and 55 tonnes for pigments. Cadmium was used in various industries such as construction (221 tonnes), electrics and electronics (130 tonnes – including cadmium in imported products), transportation (30 tonnes) and others (30 tonnes). In 2009, 430 tonnes of industrial cadmium were discharged, with 10 tonnes being recycled and 420 tonnes discarded.From the dynamic model, cadmium stocks in Korea were estimated to be about 5120 tonnes in 2009. The industrial consumption in 2030 will be reduced to only 110 tonnes, only 27% of the current consumption of 410 tonnes in 2009, due to DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). One possible solution to the Cd oversupply problem is use in cadmium telluride photovoltaic (CdTe PV) systems which have low life cycle Cd emissions (0.02 g Cd/GWh) and high end-of-life semiconductor recycling yields (95%).  相似文献   

17.
The present study focuses on the recycling of gneiss rock waste generated by the ornamental rock industry for manufacturing vitrified floor tile products. The gneiss rock waste came from a rock-cutting plant located in Santo Antônio de Pádua-RJ, Brazil. Initially the waste sample was characterized for chemical composition, X-ray diffraction, particle size, morphology, and pollution potential. Floor tiles containing up to 47.5 wt.% waste were prepared. The tiles were tested to determine their physical-mechanical properties (linear shrinkage, water absorption, apparent density, and flexural strength). Microstructural evolution was carried out by scanning electron microscopy. The results indicate that the gneiss rock waste could be used for vitrified floor tile production, resulting in a new possibility for recycling this waste and conserving natural resources.  相似文献   

18.
The Japanese system of recycling home electrical appliances has several unique aspects, including (1) a limited number of target appliances, (2) a recycling fee system that requires consumers to pay a recycling fee at the time of disposal, and (3) a direct recycling obligation for manufacturers, who have a physical, rather than a financial, responsibility for their end-of-life products. We studied data from 2001 to 2007 and found that the amount of four specified home electrical appliances and their materials that was recycled increased from about 319,249 tonnes in 2001 to about 447,262 tonnes—or 3.5 kg per inhabitant—in 2006. Recycling yield and development of recycling technologies have also improved. New recycling technologies have enabled a higher rate of material recycling of plastics (i.e., a closed-loop recycling). Improved eco-design, such as design for easier disassembly, has been promoted, and the higher quality of discarded appliances has enhanced the reuse market. Hazardous substances and fluorocarbons are being well managed. Problems with the recycling system include inelastic recycling fees, illegal dumping, illegal transfer by retailers, and the limited number of target appliances. Recycling fees could be reduced; this move might reduce the incidence of illegal dumping, as would engage stakeholders in collaborative efforts against illegal dumping. Illegal transfers could be reduced by improved traceability for retailers. Products such as liquid crystal displays, plasma display panels and clothes dryers have become increasingly common and should be also be targeted for recycling.  相似文献   

19.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   

20.
This paper clarifies household income, living and working conditions of dumpsite waste pickers at Bantar Gebang final disposal site for municipal solid waste generated in Jakarta, and investigates the feasibility of integrating the informal sector into formal waste management in Indonesia. The first author did fieldwork for totally 16 months at the site and quantitative field surveys were conducted twice during the period. All respondents in the first round quantitative survey (n = 1390) were categorized as follows: waste pickers, family workers, wage labors, bosses, family of the bosses, housewives, pupils/students, preschoolers, the unemployed, and others. Based on the results of the second round quantitative survey (n = 69 households), their average household income was estimated to be approximately US 216 dollars per month (n = 59 households), which was virtually equivalent to the minimum wage in Jakarta in 2013. Living conditions of scavengers at the site were horrible, and their working conditions were dangerous due to medical waste and other sharp waste. Polluted groundwater was one of the serious environmental problems at the site. Despite the social, health and environmental problems, they were attracted to the freedom of entering the informal recycling system in Bantar Gebang and withdrawing from the system, in which a lot of opportunities were provided for the people having few marketable skills to obtain cash earnings. The freedom of their choice should be guaranteed as a prerequisite before integrating the informal sector into formal waste management. Furthermore, special attentions are required when incomes of scavengers are the same level as minimum wages and the national economy is rapidly growing, because scavengers cannot easily change their jobs due to few marketable skills. Indonesian national waste laws and regulations should be properly applied to facilitate a socialization process at final disposal sites. Measures need to be taken to prevent children from working as informal recycling actors, especially for waste pickers aged 15 or younger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号