首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food waste is an inevitable type of waste in every city, and its treatment technology evolves with time. Due to the high organic content and high biodegradability of food waste, anaerobic digestion becomes a commonly accepted treatment method to deal with it. This review article summarizes key factors for anaerobic digestion and provides useful information for successful anaerobic digestions. Reasonable temperature and pH are essential for a successful and productive anaerobic digestion process. A good inoculum to substrate ratio triggers a profitable food waste digestion. Good mixing and small particle sizes are important factors too. In addition, the pros and cons of different reactors to food waste digestion are highlighted. Moreover, co-digestion of food waste with animal manures, sewage sludge, and green waste were introduced.  相似文献   

2.
Pistachio processing wastes create significant waste management problems unless properly managed. However, there are not well-established methods to manage the waste generated during the processing of pistachios. Anaerobic digestion can be an attractive option not only for the management of pistachio processing wastes but also producing renewable energy in the form of biogas. This study investigated anaerobic digestibility and biogas production potential of pistachio de-hulling waste from wet de-hulling process. Best to our knowledge, this is the first report on biogas production from pistachio de-hulling waste. The results indicated that (1) anaerobic digestion of pistachio de-hulling wastewater, solid waste, and their mixtures in different ratios is possible with varying levels of performance; (2) 1 L of de-hulling wastewater (chemical oxygen demand concentration of 30 g/L) produced 0.7 L of methane; (3) 1 L of de-hulling wastewater and 20 g of pistachio de-hulling solid waste produced 1.25 L of methane; and (4) 1 g of de-hulling solid waste produced 62.6 mL of methane (or 134 mL of biogas).  相似文献   

3.
The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste treatment, has great advantages, particularly in its low impact on the environment. However, there is a large increase in acidification.  相似文献   

4.
Phosphate rocks, used for phosphorus (P) fertilizer production, are a non-renewable resource at the human time scale. Their depletion at the global scale may threaten global food and feed security. To prevent this depletion, improved P resource recycling from food chain waste to agricultural soils and to the food and feed industry is often presented as a serious option. However, waste streams are often complex and their recycling efficiency is poorly characterized. The aim of this paper is to estimate the P recovery and recycling potential from waste, considering France as a case study. We assessed the P flows in food processing waste, household wastewater and municipal waste at the country scale using a substance flow analysis for the year 2006. We also quantified the P recycling efficiency as the fraction of P in waste that ultimately reached agricultural soils or was recycled in the food and feed industry. Efforts were made to limit data uncertainty by cross-checking multiple data sources concerning P content in waste materials. Results showed that, in general, P recovery in waste was high but that the overall P recycling efficiency was only 51% at the country scale. In particular, P recycling efficiency was 75% for industrial waste, 43% for household wastewater and 47% for municipal waste. The remaining P was discharged into water bodies or landfilled, causing P-induced environmental problems as well as losses of nutrient resources. Major P losses were through food waste (which amounted to 39% of P in available food) and treated wastewater, and the findings were confirmed through cross-checking with alternative data sources. Options for improving P resource recycling and, thereby, reducing P fertilizer use were quantified but appeared to be less promising than scenarios based on reduced food waste or redesigned agricultural systems.  相似文献   

5.
The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46–2.51 g volatile solids (VS) l−1 d−1, of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.  相似文献   

6.
污水厂污泥与厨余垃圾厌氧/混合厌氧消化研究进展   总被引:2,自引:0,他引:2  
李磊 《四川环境》2011,30(2):93-96
本文主要对国内外城市污水厂污泥与厨余垃圾混合厌氧消化的研究进行了综述,介绍了厌氧消化技术在污水厂污泥和厨余垃圾处理处置中的应用,对两种废物单独厌氧消化和混合厌氧消化技术进行了比较,分析了城市污水厂污泥与厨余垃圾混合厌氧消化的可行性以及工艺参数对混合厌氧消化的影响,并对城市污水厂污泥与厨余垃圾的混合厌氧消化技术的研究和应用提出了展望。  相似文献   

7.
Alternative scenarios to meet the demands of sustainable waste management   总被引:1,自引:0,他引:1  
This paper analyses different alternatives for solid waste management that can be implemented to enable the targets required by the European Landfill and Packaging and Packaging Waste Directives to be achieved in the Valencian Community, on the east coast of Spain. The methodology applied to evaluate the environmental performance of each alternative is Life Cycle Assessment (LCA). The analysis has been performed at two levels; first, the emissions accounted for in the inventory stage have been arranged into impact categories to obtain an indicator for each category; and secondly, the weighting of environmental data to a single unit has been applied. Despite quantitative differences between the results obtained with four alternative impact assessment methods, the same preference ranking has been established: scenarios with energy recovery (1v and 2v) achieve major improvements compared to baseline, with scenario 1v being better than 2v for all impact assessment methods except for the EPS'00 method, which obtains better results for scenario 2v. Sensitivity analysis has been used to test some of the assumptions used in the initial life cycle inventory model but none have a significant effect on the overall results. As a result, the best alternative to the existing waste management system can be identified.  相似文献   

8.
Environmental life cycle assessment (LCA) developed rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following five issues are discussed. (1) Upstream and downstream system boundaries: where is the ‘cradle’ and where is the ‘grave’ in the analysed system? (2) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (3) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. The question is how this should be done. (4) Time: emissions from landfills will continue for a long time. An important issue to resolve is the length of time emissions from the landfill should be considered. (5) Life cycle impact assessment: are there any aspects of solid waste systems (e.g. the time horizon) that may require specific attention for the impact assessment element of an LCA? Although the discussion centres around LCA it is expected that many of these issues are also relevant for other types of systems analyses.  相似文献   

9.
The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.  相似文献   

10.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

11.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   

12.
Many retailers take initiatives to reduce food waste, which can lead to enhanced sustainability, including reduced environmental impacts and cost savings. Another common environmental strategy in retail management is to increase the range of organic products. This study examined if organic food products have a higher level of waste, which thereby risk to counteract the environmental ambitions behind offering these products. The study also examined to what degree differences in waste level could be explained by turnover, shelf-life and wholesale pack size. In the study, six Swedish supermarkets provided data on all articles sold or wasted in the deli, meat, dairy and cheese departments during 2010 and 2011. 24 organic products were compared to their conventional counterparts; 22 of these had higher waste levels (from 1.5 to 29 times higher). Differences in wastage were also compared across departments; in all four departments, organic products as a group had higher waste percentage at all four departments. There was a negative correlation between the total mass sold of a product and the percentage waste. Also, longer shelf-life was associated with decreased waste, but only for products with low turnover. The systematic problem of retail food waste – particularly of organic products and other products with a low turnover – may be mitigated by increasing turnover, by stocking products with longer shelf-life or by decreasing the ordered volume (e.g. through decreased wholesale pack sizes).  相似文献   

13.
宋平 《四川环境》1997,16(1):14-17
本文综合叙述了1996年度国内关于厌氧消化技术的研究,包括基础理论的研究,消化工艺的研究,以及厌氧消化应用于各种废物处理的研究。  相似文献   

14.
The increase in animal and agro-industrial production must be accompanied by the development of appropriate waste and by-product management strategies. Anaerobic digestion is a promising approach to recycle these wastes and reintegrate them into the economic production cycle of biogas and biofertilizer. In order to improve the performance of the anaerobic mesophilic digestion of abundant agro-industrial wastes constituted by potato peel (PP), and poultry waste (PW) and study the contribution of bovine bone meal (BB) as additive rich in phosphorus, which can help to neutralize the acidity of the substrate. The 10-point simplex-centroid design and the isoresponse surfaces strategy were used. This study demonstrated that in mesophilic bio-digestion, the using bovine bones in admixture with agroindustrial residue provided for the proper balance of chemical components required for proliferation of microbiological agent of bioconversion, which also resulted in an increase in biogas production capacity. The best formula was so composed by 66.67% bovine bone, 16.67% potatoes peel, and 16.67% poultry waste. The stability was achieved here after only 12 days. The digestate generated from it was fulfilled with the microbiological and chemical requirements for safety defined by the NF U44-551 standard. Germination test revealed that this optimal produced digestate, did not hinder growth, in fact, almost 85% of seed was germinated. Finally, fertilization experiments prove that this digestate can boost the growth of bell pepper (Capsicum annuum).  相似文献   

15.
The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic fraction for mechanical upgrading and separation into specific polymer types, with the residual plastic fraction being down-cycled and used for “wood items”. In P3 a mixed plastic fraction is source separated together with metals in a “dry bin”. In P4 plastic is mechanically separated from residual waste prior to incineration.A sensitivity analysis on the marginal energy was carried out. Scenarios were modelled as a first step assuming that marginal electricity and heat were based on coal and on a mix of fuels and then, in the sensitivity analysis, the marginal energy was based on natural gas.The study confirmed the difficulty to clearly identify an optimal strategy for plastic waste management. In fact none of the examined scenarios emerged univocally as the best option for all impact categories. When moving from the P0 treatment strategy to the other scenarios, substantial improvements can be obtained for “Global Warming”. For the other impact categories, results are affected by the assumption about the substituted marginal energy. Nevertheless, irrespective of the assumptions on marginal energy, scenario P4, which implies the highest quantities of specific polymer types sent to recycling, resulted the best option in most impact categories.  相似文献   

16.
There is increasing concern about feeds prepared from food residues (FFR) from an environmental viewpoint; however, various forms of energy are consumed in the production of FFR. Environmental impacts of three scenarios were therefore investigated and compared using life cycle assessment (LCA): production of liquid FFR by sterilization with heat (LQ), production of dehydrated FFR by dehydration (DH), and disposal of food residues by incineration (IC). The functional unit was defined as 1 kg dry matter of produced feed standardized to a fixed energy content. The system boundaries included collection of food residues and production of feed from food residues. In IC, food residues are incinerated as waste, and thus the impacts of production and transportation of commercial concentrate feeds equivalent to the FFR in the other scenarios are included in the analysis. Our results suggested that the average amounts of greenhouse gas (GHG) emissions from LQ, DH, and IC were 268, 1073, and 1066 g of CO(2) equivalent, respectively. The amount of GHG emissions from LQ was remarkably small, indicating that LQ was effective for reducing the environmental impact of animal production. Although the average amount of GHG emissions from DH was nearly equal to that from IC, a large variation of GHG emissions was observed among the DH units. The energy consumption of the three scenarios followed a pattern similar to that of GHG emissions. The water consumption of the FFR-producing units was remarkably smaller than that of IC due to the large volumes of water consumed in forage crop production.  相似文献   

17.
Waste of food is a topic of considerable policy interest. However, few studies have been done on food waste at the retail level. The aim of this study was to examine how large retail waste is for 16 different horticultural products, selected among typical fruit and vegetables. The levels of retail waste were examined in cooperation with one of the leading Swedish retail companies. The results showed that retail waste of horticultural products amounted between 0.4% and 6.3% of store supplies for different horticultural products. The results did not show that packaging reduced waste of horticultural products.  相似文献   

18.
Biohythane production via single-stage anaerobic digestion (AD) is an effective way for sustainable energy recovery from lignocellulosic biomass. In this paper, biohythane was produced through the AD process from pineapple peel waste substrate using purely cultured Methanosarcina mazei with the enhancement of palm oil mill effluent (POME) sludge as the inoculum. This study focuses on the effects of the lignocellulosic pre-treatment method, the addition of POME sludge into M. mazei culture medium as inoculum, and various operational conditions (food to microorganisms (F/M) ratios, temperature, pH) on gas production performances. The experimental results indicate that these parameters influenced the efficiency of biohythane production by producing the peak maximum biohythane production rate values (HPRmax) and (MPRmax), H2:CH4 = 1.93:0.67 L/L-d, and biohythane yield (HY) and (MY), H2:CH4 = 1.18:0.55 mL/L-substrate. This study demonstrates that biohythane gas (H2 + CH4 + CO2) production from pineapple waste can be accelerated by M. mazei only with the enhancement of POME sludge through single-stage AD system under mesophilic batch process conditions.  相似文献   

19.
生命周期评价是评价产品、工艺或活动(服务)整个生命周期阶段有关环境负荷,进而辨识和评价减少环境影响机会的一种非常有用的工具。将生命周期评价应用于固体废物环境管理,无疑对于我国建立科学化的固体废物环境管理模式具有十分重要的作用。本文对生命周期评价的定义、主要阶段、应用工具、特点进行了阐述,并对生命周期评价如何应用于我国固体废物环境管理进行了探讨。  相似文献   

20.
Goal of the work is to present a simplified methodology to optimize an integrated solid waste management system. The methodology performs two optimizations, namely: (i) minimization of the total cost of the MSW system and (ii) minimization of the equivalent carbon dioxide emissions (CO2e) generated by the whole system. The methodology is modeled via non-linear mathematical equations, uses 32 decision variables and does not require complex LCA databases. The proposed model optimally allocates eight MSW components (paper, cardboard, plastics, metals, glass, food wastes, yard wastes and other wastes) to four MSW management technologies (incineration, composting, anaerobic digestion, and landfilling) after source separation of recyclables has taken place. The Region of East-Macedonia and Thrace in Greece was selected as a case study. Results showed that there is a trade off between cost and CO2e emissions. Incineration and composting were favored as the principal treatment technologies, while landfilling was always the least desirable management technology under both objective functions. The recycling participation rate significantly affected all optimum scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号