首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Closed-loop recycling of steel in automobiles is particularly difficult because of the low tolerance for impurities and the use of composites of various types of steel products. Technologies that reduce impurities or increase impurity tolerance must be developed and introduced to the steel recycling system at the appropriate time. This study evaluated the feasibility of closed-loop recycling in the automobile industry in China. Material pinch analysis combined with dynamic modeling of the life cycle of steel sheets used in the manufacture of automobiles was employed to estimate the amount of steel sheet scrap available for closed-loop recycling and the amount of copper contamination in the scrap. The results indicate that by 2050, more than half of the old steel sheet scrap generated annually will have to be down-cycled because of its high copper contamination. However, scenario analyses of three types of technologies for mitigating the problem of copper contamination showed the potential for increasing the amount of old scrap used in closed-loop recycling. In particular, improving copper tolerance in the steel production process could be effective both now and in 2050.  相似文献   

2.
Primary steelmaking involves CO2-intensive processes, but the expansion of secondary steel production is limited by the global availability of steel scrap. The present work examines global scrap consumption in the past (1870–2012) and future scrap availability (2013–2050) based on the historical trend. The results reveal that (i) historically, the consumption of old scrap has been insufficient compared with the amounts of discarded steel, and (ii) based on historical scrap consumption, the future availability of scrap will not be sufficient to satisfy the two assumed cases of steel demand. Primary steelmaking is expected to remain the dominant process, at least up until 2050. Under the reference-demand case of 2.19 billion tons in crude steel production by 2050, the total production of pig iron and direct reduced iron could reach 1.35 billion tons. Consumption of old scrap could reach 0.76 billion tons. Because the availability of scrap will be limited in the context of the global total, it is important to research and develop innovative low-carbon technologies for primary steelmaking and to explore their economic viability if we are to aim for achieving large reductions in CO2 emissions from the iron and steel industry.  相似文献   

3.
我国废有色金属拆解利用再生产业发展现状   总被引:1,自引:0,他引:1  
阐述了我国废金属拆解利用产业发展现状及存在的主要问题,提出了应对废金属拆解再生产业加强政府引导、加强回收体系建设、研发推广先进技术和改善税收政策等对策建议。  相似文献   

4.
China is the largest steel producer and consumer around the world. Quantifying the Chinese steel flow from cradle to grave can assist this industry to fully understand its historical status and future options on production route transformation, capacity planning, scrap availability, resource and energy consumption. With the help of the systematic methods combined dynamic MFA (material flow analysis) with scenario analysis, the Chinese steel cycle during the first half of the 21st century was quantified and several thought-provoking conclusions were draw. In the past decade, lots of pig iron or molten iron was fed into EAF (electric arc furnace) and the scrap usage of EAF fluctuated slightly. Thus, the real scrap-EAF route share is much lower than the EAF production share. On the other hand, we reconfirmed that the scrap supply in China will rise significantly in the future. Meanwhile, the secondary production route share will grow sharply and exceed primary production share before or after 2050 depending on our options. The scrap recycling rate and construction's lifetime play a vital role in this trend. In the end, an intensive discussion on production capacities’ adjustment and energy and resource consumption was conducted and relative policy suggestions were given. It is worth noting that scrap usage is crucial to future energy saving and emissions reduction of Chinese steel sector and its energy consumption might peak as early as 2015.  相似文献   

5.
Material flow analysis (MFA) is an evaluation technique that systematically identifies the flows and stocks of materials within predefined spatial and temporal boundaries. In this paper, the steel resources in Korea are investigated using dynamic MFA. Iron ore and steel scrap are added as raw material components during the production processes of steel, which is then used in a variety of product groups such as construction products, transportation equipment, machinery/metal products, electrical/electronic devices, and other products through fabrication and manufacturing processes. When such product groups are discarded, they are either recycled or landfilled. With consideration for the lifetimes of various product groups in conjunction with steel resource flows in Korea, dynamic MFA is conducted on the flows of steel stock change and annual scrap generation. By 2020, these two flows are expected to increase by as much as 40% and 30%, respectively, compared to 2008, with transportation equipment, in particular, envisaged to experience high growth. At the current recycling rate, however, it will be hard to meet future scrap demand. According to the scenario analysis, 100% of this future scrap demand can be supplied domestically if the recycling rate is increased to over 70% for all product groups, except construction products and transportation equipment, which already have high recycling rates. By 2020, the reduction in scrap importation costs is projected to offer a financial gain of 2.3 billion dollars.  相似文献   

6.
Zinc is one of the most widely applied nonferrous metals in China. Study on the applications and recurrent situation of zinc resources is of great strategic importance for the sustainable development of China's economy. In this paper, a dynamic material flow analysis (MFA) method has been adopted to analyze quantificationally zinc resources in China, as well as to analyze and predict the quantity of zinc product scrap and their recycling situation. The weighted average method was applied to calculate average lifetimes of six major zinc products in China. The average lifetimes of battery, zinc oxide, zinc die-casting alloys, zinc material products, galvanized zinc and brass are 0.17, 5.3, 11.1, 12, 21 and 30 years, respectively. Assuming the lifetime of zinc product group obeys the Weibull distribution and the consumption of zinc products varies linearly with time, the future consumption and scrap generation of zinc products will increase continuously. It is expected that they would increase from 49% to 76% during 2004–2020, respectively. Assuming the recycling rate remains unchanged with time, the zinc old scrap index, both the theoretical and actual values, would continue increasing in China. The values are expected to reach 0.402 and 0.076 by 2020, respectively. Therefore, the regeneration resource of depreciated zinc is actually insufficient in China. According to the scenario analysis, the actual value of old scrap indexes is positively correlated with the recycling rate of zinc products. Because galvanized products are the largest consumption area of zinc products in China, the influence of their recycling rate on old scrap index is obviously larger than other zinc products. Through the analysis, this paper suggests that the increase of the recycling rate of zinc products could not only improve to a certain degree China's relative shortage of zinc resources, but greatly relive the supply pressure of zinc in the world.  相似文献   

7.
Understanding the cost-effectiveness and the role of economic and policy instruments, such as the combined product tax-recycling subsidy scheme or a tradable permit, for scrap tire recycling has been of crucial importance in a market-oriented environmental management system. Promoting product (tire) stewardship on one hand and improving incentive-based recycling policy on the other hand requires a comprehensive analysis of the interfaces and interactions in the nexus of economic impacts, environmental management, environmental valuation, and cost-benefit analysis. This paper presents an assessment of the interfaces and interactions between the implementation of policy instruments and its associated economic evaluation for sustaining a scrap tire recycling program in Taiwan during the era of the strong economic growth of the late 1990s. It begins with an introduction of the management of the co-evolution between technology metrics of scrap tire recycling and organizational changes for meeting the managerial goals island-wide during the 1990s. The database collected and used for such analysis covers 17 major tire recycling firms and 10 major tire manufacturers at that time. With estimates of scrap tire generation and possible scale of subsidy with respect to differing tire recycling technologies applied, economic analysis eventually leads to identify the associated levels of product tax with respect to various sizes of new tires. It particularly demonstrates a broad perspective of how an integrated econometric and engineering economic analysis can be conducted to assist in implementing policy instruments for scrap tire management. Research findings indicate that different subsidy settings for collection, processing, and end use of scrap tires should be configured to ameliorate the overall managerial effectiveness. Removing the existing boundaries between designated service districts could strengthen the competitiveness of scrap tires recycling industry, helping to reduce the required levels of product tax and subsidy. With such initial breakthroughs at hand to handle the complexity of scrap tire recycling technologies, there remains unique management and policy avenues left to explore if a multi-dimensional solution is to be successful in the long run.  相似文献   

8.
钢铁行业的低碳转型对于我国实现碳达峰碳中和目标具有至关重要的作用,有必要提前研究“双碳”目标下中国钢铁行业的发展路径及技术路线图。本文回顾了中国钢铁行业发展的历史趋势;归纳了钢铁行业实现低碳发展的主要技术选择;基于文献调研汇总了近年来关于中国钢铁行业低碳发展路径的相关研究,并总结了不同研究对钢铁未来低碳路径中关键参数的判断,包括粗钢产量、废钢资源量、电炉炼钢比例、低碳技术应用、能耗强度、二氧化碳排放等,同时分析了不同研究得出的普遍认识和主要差异。在研究中我们也简要分析了中国钢铁转型路径与全球钢铁转型路径之间的异同。基于上述分析,本文提出了“双碳”目标下中国钢铁行业发展路径的研究需求。  相似文献   

9.
The purpose of this paper is to review, and draw attention to, issues raised by the recycling of wrought aluminium from motor cars, even though the time horizon for significant arisings of such aluminium scrap is in the order of 20 years from now. Recycling of specific grades of wrought aluminium will be viable only when a means of positively identifying different types of scrap is available. A solution must be reliable, rapid, and low-cost; probably used in conjunction with a vehicle shredder. Such a system of identification will eliminate the need for costly hand-dismantling and segregation. Simple segregation of cast and wrought alloy will, however, be essential when wrought aluminium from car bodies dominates the scrap arisings. Such segregation will produce two high-value scrap products. The first of which will be similar to the A380 casting alloy specification, maintaining the current supply of this scrap, and the second will be a composite of wrought alloys. These issues are relevant to the aluminium scrap industry, which will have to accommodate future changes in the composition of the scrap it receives, and the motor industry, which may adopt in-house recycling of wrought alloy in order to offset the high purchase cost of aluminium.  相似文献   

10.
Iron is an important basic resource for national economic development in China. It is of great strategic importance for the sustainable development of China's economy to study the utilization and circulation status of iron resources. In this paper, using the material flow and value chain analysis method, we quantitatively analyzed the value flow of iron resources in China. According to the value chain and price theory of element M, a value stream diagram of iron resources corresponding to the substance flow chart was plotted. Based on the previous material flow analysis result of iron resources, the diagram quantitatively depicted the value of the circulating flow of iron resources in China in 2011. The results show that by recycling materials, the value of the circulating flow of iron resources can bring considerable economic benefits to both producers and consumers. In the production stage, the expenditures of the entire economic system was reduced by 91.77 billion RMB by circulating iron and the income increased by 95 billion RMB by recycling home scrap, which was generated in the crude steel production stage. In the use stage of iron and steel products, the recycling of old scrap enabled the entire economic system to recover 370.78 billion RMB. It should be noted that analysis within a single framework of physical and economic characteristics of iron resources in the economic system can further extend the research chain of substance flow and value flow at the macro level, enhancing the economic value of substances flow research. In addition, by tracking and depicting the value flow cycle of elements, the improvement potentials and the value situations can be determined to provide useful information for conducting processing and technological innovation for waste minimization.  相似文献   

11.
Currently, the blast furnace (BF) to basic oxygen furnace (BOF) is the dominant steel production route in the steel industry. The direct CO2 emission in this process system exceeds 1 t of CO2/t of crude steel produced. Different ferrous burden materials, for instance iron ore and scrap, can be used in various proportions in this steelmaking route. This paper analyses how energy use, conversion costs, and CO2 emissions can be influenced by the use of different ferrous burden materials when producing crude steel. An optimisation mixed integer linear programming (MILP) model has been applied for analysis. By the use of the optimisation model, it is possible to highlight some issues of special importance, such as best practices to increase production at low conversion cost, or best practices to increase production at low CO2 emission. It is found out that more benefits will be gained when using the system-oriented analysis to the steelmaking process. Furthermore, a comprehensive view of the trade-offs between the objectives of Cost and CO2 can provide useful information for decision makers to generate strategies under the future emission trading.  相似文献   

12.
Nowadays, aluminum scrap is traded globally. This has increased the need to analyze the flows of aluminum scrap, as well as to determine the environmental consequences from aluminum recycling. The objective of this work is to determine the greenhouse gases (GHG) emissions of the old scrap collected and sorted for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the GHG emissions (generated and avoided) associated with old scrap recycling within a global market. From the MFA results, we projected that the Spanish demand for aluminum products will be met mainly with an increase in primary aluminum imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the scenario and on the marginal source of primary aluminum considered, the GHG emission estimates varied between −18,140 kg of CO2 eq. t−1 and −8427 of CO2 eq. t−1 of old scrap collected. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the GHG impacts derived from recycling, has become an essential prerequisite to consistent development from a linear toward a circular economy (CE).  相似文献   

13.
Reuse of structural steel could be an environmentally superior alternative to the current practice, which is to recycle the majority (88%) of scrap steel. In spite of the potential benefits, and in a time when “sustainability” and “climate change” are critical societal issues, the question arises: why are greater rates of structural steel reuse not being observed? One of the major factors in the rate of structural steel reuse is how decision-makers understand the life cycle implications of their choice to recycle steel rather than reuse it. This paper contributes towards our understanding of these implications, particularly the cost implications, of reuse as an alternative to recycling by presenting a streamlined life cycle analysis and identifying the major contributors to each process. The results of a case study indicate that a significant reduction in some life cycle impact metrics (greenhouse gas emissions, water use) can result from reusing structural steel rather than recycling it. The largest contributors to the life cycle impact of recycling were the shredding, melting, and forming sub-processes. The largest contributor to reuse was the deconstruction sub-process. A total life cycle cost analysis is performed to understand the cost of damages to the environment and human health in combination with the cost of construction activities. Sensitivity and uncertainty analyses are also conducted to quantify variability in the results and determine economic conditions where the two processes have an equal cost.  相似文献   

14.
Twenty-two metals for which secondary recovery is important, in terms of quantity and/or value, were compared and ranked for rate and efficiency of recycling, and availability of recycled metal. In general, their recycling rates trended upward over the period 1970–1993. Iron, aluminum, copper, gold, platinum, and lead accounted for most of the value of all secondary metal produced, while iron and steel dominated in terms of quantity produced and exported. The factors most influential on recycling rates are profitability, public support, organization of infrastructure, sortability, legislative support, and scrap purity. The share of supply accounted for by secondary metals is expected to surpass that of primary metals sometime in the next decade.  相似文献   

15.
钢铁行业铁矿石烧结和电弧炉炼钢是我国二噁英减排优先重点控制的行业之一。本文简要介绍了二噁英的危害性和烧结、电炉炼钢工艺二噁英的产生成因,并从清洁生产技术和污染治理技术两方面探讨二噁英的减排途径。  相似文献   

16.
According to existing estimates, available old copper scrap has more than tripled over the past 40 years. Secondary production (that is, copper produced from recycling old scrap), however, has only doubled. Indeed, over the past 10 years, while copper consumption and primary production have continued to expand briskly, while available old scrap has increased by over 35%, secondary production has actually stagnated.For a world concerned with sustainable development and the quality of the earth's environment, this performance is disappointing and in need of explanation. Other things being equal, one would expect the amount of recycling to increase with the availability of scrap, as many econometric models of the world copper market developed over the past several decades explicitly assume.The key to understanding sluggish growth in secondary production, this paper argues, is distinguishing carefully between (1) the flow of old scrap that arrives each year from products reaching the end of their useful lives during the year and (2) the available stock of old scrap that was not recycled during earlier years presumably because it was too costly to do so. Using an econometric model, the paper shows that old scrap stocks, which have contributed most of the increase in available old copper scrap over the years, have a very modest impact on secondary production. Old scrap flows have a much greater effect, but they account for only about 4% of the available old scrap for any given year.  相似文献   

17.
Along with the increasing number of automotive output and End-of-Life vehicles (ELVs) in China, resources shortage and environmental pollution are aggravating, so the tremendous need to reuse automotive components gives birth to the industry. The Chinese government becomes to realize that it is necessary to build a conservation-oriented and environment-friendly harmonious society. As the ultimate form of recycling, remanufacturing will be an effective method to promote the development of Chinese circular economy. The automotive remanufacturing industry in China is just at the preliminary stage, this paper presents some problems before remanufacturing, during remanufacturing and after remanufacturing, and then it points out several barriers, such as restrictive policies and regulations, consumer acceptance, scarcity of technologies, etc. Like many other developed countries, Chinese remanufacturing industry will also experience the primary stage, growth stage and developed stage. while the emphasis of resources input will not be the same. By analyzing the resources input characteristics at different development stages, three development patterns, such as the Government Incenting Pattern, Technology Driving Pattern and Market Leading Pattern, are put forward. At present, the cooperation of the government, industry, universities and research institutes, etc, will jointly construct the enhancing system of automotive components remanufacturing industry in China. Finally, it concludes with a summary and some suggestions in the field.  相似文献   

18.
Residue materials generated in the metallurgical industry have gained an increasing importance, both from the points of view of energy and material supply. A joint process integration model for the integrated steel plant system is developed and used in this paper. It takes into account both residue materials and energy recirculation for the system. The potential for increased recirculation and the effect on the system from an environmental point of view is presented, and implementations and practical experiences are discussed. The model developed can serve as a benchmark for different steelmaking operations and constitute a basis for the continuous work involved in material, energy, environment or economic analyses for the steel production system.  相似文献   

19.
我国将生活垃圾分类收集定位为重要民生工程和生态文明建设的工作内容,并对实施生活垃圾强制分类的示范城市明确提出了"生活垃圾回收利用率"的绩效考核目标。由于城市生活垃圾处理和再生资源回收利用由不同职能部门负责管理,不同来源的生活垃圾回收利用统计数据未有效整合,目前还缺乏我国城市生活垃圾回收利用率指标测算的相关研究。本文界定了"生活垃圾回收利用率"的科学内涵,并以城市建设、再生资源利用等统计资料和物质流分析文献为基础,初步测算了全国尺度的城市生活垃圾回收利用率。研究表明,我国2006—2015年的城市生活垃圾回收利用率从12.1%上升至17.0%,然后又缓慢下降至15.6%,由于数据缺乏,该数值可能在-28%~+32%波动。生活垃圾中回收利用量较大的可再生资源分别为废纸、废塑料、废钢铁、废玻璃等。本文还分析了目前测算生活垃圾回收利用率的数据不确定性和局限性,提出了面向生活垃圾分类管理实际评价的统计数据收集对策。  相似文献   

20.
Up to 5% of steel is lost with the scale at hot rolling operation. This waste contains 69-72% of iron in the form of oxides. However, its recycling is confronted with presence of up to 20% of oil and 10% of water. E.g. when the oiled scale is introduced as an additive to the iron ore sintering mixture, incomplete combustion of liberated oil at heating during sintering process creates problems for gas cleaning and may even lead to damage of the equipment. A possibility to improve combustion of the scale's oil at the sintering process by preparation of a mixture with peat was shown in the laboratory experiments. Industrial trials demonstrate possibility to increase the oil combustion degree at sintering 2.7 times as much. Consumption of the oiled scale was increased from zero to 12.8 kg (in a form of scale-peat blend) per ton of sinter, which allows for closing the loop of this waste at the integrated steelmaking factory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号