首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Water Erosion Prediction Project (WEPP) model has been tested for its ability to predict soil erosion, runoff, and sediment delivery over a wide range of conditions and scales for both hillslopes and watersheds. Since its release in 1995, there has been considerable interest in adding a chemical transport element to it. Total phosphorus (TP) loss at the watershed outlet was simulated as the product of TP in the soil, amount of sediment at the watershed outlet, and an enrichment ratio (ER) factor. WEPP can be coupled with a simple algorithm to simulate phosphorus transport bound to sediment at the watershed outlet. The objective of this work was to incorporate and test the ability of WEPP in estimatingTP loss with sediment at the small watershed scale. Two approaches were examined. One approach (P-EER) estimated ER according to an empirical relationship; the other approach used the ER calculated by WEPP (P-WER).The data used for model performance test were obtained from two side-by-side watersheds monitored between 1976 and 1980. The watershed sizes were 5.05 and 6.37 ha, and each was in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Measured and simulated results were compared for the period April to October in each year. There was no statistical difference between the mean measured and simulated TP loss. The Nash-Sutcliffe coefficient was 0.80 and 0.78 for the P-EER and P-WER methods, respectively. It was critical for both methods that WEPP adequately represent the biggest sediment yield events because sediment is the main driver for TP loss so that the model can adequately simulate TP losses bound to sediment. The P-WER method is recommended because it does not require use of empirical parameters to estimate TP loss at the watershed outlet.  相似文献   

2.
A multi-tier approach for agricultural watershed management has been proposed. The approach involves identification of a watershed management issue/problem, selection or development of simple conceptual model suitable for the exploration of the issue/problem identified and appropriate to the database available, and application of the model the address the identified issue/problem. The procedure is repeated by increasing the complexity in the conceptual model until the identified issue/problem has been addressed satisfactorily. An application of the procedure to an example watershed in southern Ontario conditions is shown. The application example has revealed that for identification of temporal pattern of runoff and sediment loads a simple conceptual model is adequate. For identification of spatial location of the sediment source areas and for the development of a monitoring program for the evaluation of remedial strategies a more complex distributed agricultural watershed model is necessary.  相似文献   

3.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

4.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

5.
ABSTRACT: The watershed model GAMES is used for the evaluation of a targeting approach to control fluvial sedimentation arising from soil erosion in agricultural areas. The data considered for the analysis consists of output from the application of the model to existing and hypothetical soil and crop management systems in two small watersheds of southern Ontario, one in the rolling uplands and the other in a very flat lowland area. The model output includes estimates of spring sediment yield from field-size cells to the stream outlet for existing agricultural management conditions, and estimates of sediment yield resulting from the successive implementation of two levels of soil erosion controls under four remedial measures strategies. The results reveal that, for the rolling upland watershed exhibiting a wide range of soil erosion and sediment yield rates, targeted control programs can be expected to provide an extremely effective approach to sediment control. For flat lowland watersheds, exhibiting relatively uniform soil erosion and sediment yield rates, the strategy of targeting controls may be somewhat more effective than a random approach to control, but not as efficient as in the case of watersheds in more rolling terrain. It is evident from the study that a screening model such as GAMES provides a very useful tool for the planning and evaluation of erosion and sediment control programs.  相似文献   

6.
In a climate of limited resources, it is often necessary to prioritize restoration efforts geographically. The synoptic approach is an ecologically based tool for geographic prioritization of wetland protection and restoration efforts. The approach was specifically designed to incorporate best professional judgment in cases where information and resources are otherwise limited. Synoptic assessments calculate indices for functional criteria in subunits (watersheds, counties, etc.) of a region and then rank the subunits. Ranks can be visualized in region-scale maps which enable managers to identify areas where efforts optimize functional performance on a regional scale. In this paper, we develop a conceptual model for prioritizing watersheds whose wetlands can be restored to reduce total sediment yield at the watershed outlet. The conceptual model is designed to rank watersheds but not individual wetlands within a watershed. The synoptic approach is valid for applying the sediment yield reduction model because there is high demand for prioritizing disturbed wetlands for restoration, but there is limited, quantitative, accurate information available with which to make decisions. Furthermore, the cost of creating a comprehensive database is prohibitively high. Finally, because the model will be used for planning purposes, and, specifically, for prioritizing based on multiple decisions rather than optimizing a single decision, the consequence of prioritization errors is low. Model results cannot be treated as scientific findings. The conclusions of an assessment are based on judgement, but this judgement is guided by scientific principles and a general understanding of relevant ecological processes. The conceptual model was developed as the first step towards prioritizing of wetland restoration for sediment yield reduction in US EPA Region 4.  相似文献   

7.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

8.
ABSTRACT: Nonpoint source (NPS) models and expert opinions are often used to prescribe best management practices (BMPs) for controlling NPS pollution. An optimization algorithm (e.g., a genetic algorithm, or GA) linked with a NPS model (e.g., Annualized AGricultural Nonpoint Source pollution model, or AnnAGNPS), can be used to more objectively prescribe BMPs and to optimize NPS pollution control measures by maximizing pollutant reduction and net monetary return from a watershed. Pollutant loads from design storms and annual loads from a continuous simulation can both be used for optimizing BMP schemes. However, which strategy results in a better solution (in terms of providing water quality protection) for a watershed is not clear. The specific objective of the study was to determine the differences in watershed pollutant loads, in an experimental watershed in Pennsylvania, resulting from optimization analyses performed using pollutant loads from a series of five 2‐yr 24‐hr storm events, a series of five 5‐yr 24‐hr storm events, and cumulative pollutant loads from a continuous simulation of five years of weather data. For each of these three different event alternatives, 100 near optimal solutions (BMP schemes) were generated. Sediment (Sed), sediment nitrogen (SedN), dissolved N (SolN), sediment organic carbon (SedOC), and sediment phosphorus (SedP) loads from a different five‐year period (an evaluation period) suggest that the optimal BMP schemes resulting from the use of annual cumulative pollutant loads from a continuous simulation of five years of weather data provide smaller cumulative NPS pollutant loads at the watershed outlet.  相似文献   

9.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   

10.
Land use planning is an important element of the integrated watershed management approach. It not only influences the environmental processes such as soil and stream bed erosion, sediment and nutrient concentrations in streams, quality of surface and ground waters in a watershed, but also affects social and economic development in that region. Although its importance in achieving sustainable development has long been recognized, a land use planning methodology based on a systems approach involving realistic computational modeling and meta-heuristic optimization is still lacking in the current practice of integrated watershed management. The present study proposes a new approach which attempts to combine computational modeling of upland watershed processes, fluvial processes and modern heuristic optimization techniques to address the water-land use interrelationship in its full complexity. The best land use allocation is decided by a multi-objective function that minimizes sediment yields and nutrient concentrations as well as the total operation/implementation cost, while the water quality and the production benefits from agricultural exploitation are maximized. The proposed optimization strategy considers also the preferences of land owners. The runoff model AnnAGNPS (developed by USDA), and the channel network model CCHE1D (developed by NCCHE), are linked together to simulate sediment/pollutant transport process at watershed scale based on any assigned land use combination. The greedy randomized adaptive Tabu search heuristic is used to flip the land use options for finding an optimum combination of land use allocations. The approach is demonstrated by applying it to a demonstrative case study involving USDA Goodwin Creek experimental watershed located in northern Mississippi. The results show the improvement of the tradeoff between benefits and costs for the watershed, after implementing the proposed optimal land use planning.  相似文献   

11.
ABSTRACT: A model called SPNM from the words “sediment-phosphorus-nitrogen model” was developed for simulating agricultural contributions to water pollution. SPNM is designed to predict sediment, P, and N yields for individual storms on small basins and to route these yields through streams and valleys of large basins. Users need no computer programming experience because the model is a problem-oriented computer language. SPNM is useful in planning water resources projects and in research. Tests of the model on a watershed provided realistic results.  相似文献   

12.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   

13.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   

14.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

15.
Schilling, Keith E., Thomas M. Isenhart, Jason A. Palmer, Calvin F. Wolter, and Jean Spooner, 2011. Impacts of Land‐Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):672‐686. DOI: 10.1111/j.1752‐1688.2011.00533.x Abstract: Suspended sediment is a major water quality problem, yet few monitoring studies have been of sufficient scale and duration to assess the effectiveness of land‐use change or conservation practice implementation at a watershed scale. Daily discharge and suspended sediment export from two 5,000‐ha watersheds in central Iowa were monitored over a 10‐year period (water years 1996‐2005). In Walnut Creek watershed, a large portion of land was converted from row crop to native prairie, whereas in Squaw Creek land use remained predominantly row crop agriculture. Suspended sediment loads were similar in both watersheds, exhibiting flashy behavior typical of incised channels. Modeling suggested that expected total soil erosion in Walnut Creek should have been reduced 46% relative to Squaw Creek due to changes in land use, yet measured suspended sediment loads showed no significant differences. Stream mapping indicated that Walnut Creek had three times more eroding streambank lengths than did Squaw Creek suggesting that streambank erosion dominated sediment sources in Walnut Creek and sheet and rill sources dominated sediment sources in Squaw Creek. Our results demonstrate that an accounting of all sources of sediment erosion and delivery is needed to characterize sediment reductions in watershed projects combined with long‐term, intensive monitoring and modeling to account for possible lag times in the manifestation of the benefits of conservation practices on water quality.  相似文献   

16.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

17.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

18.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

19.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   

20.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号