首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

2.
ABSTRACT: Vertical attenuation of photosynthetically active radiation (PAR) in clear waters of central Florida theoretically can vary almost 50 percent during a sunny summer day as a result of changing solar elevation. We used a simple formula to partially adjust the attenuation coefficient in Tampa Bay and Charlotte Harbor for changing solar elevation of the direct beam and then used multiple regression analysis to estimate the relative contribution of different water properties or constituents to the adjusted attenuation coefficient, kadj. Color, on an average, was responsible for 18 percent of kadj, chlorophyll a for 21 percent, nonchiorophyll suspended matter for 55 percent, and seawater for the remaining 6 percent. In both estuaries, kadj increased with decreasing salinity as a result of freshwater runoff adding color, suspended matter, and nutrients. Nutrients affected attenuation by stimulating phytoplankton growth and increasing concentrations of chlorophyll a. Reduced nutrient loading to upper Tampa Bay (Hilisborough Bay) in the early to mid-1980's appears to have decreased concentrations of chlorophyll a, increased water clarity, and increased seagrass recolonization. Assuming other attenuating substances remained unchanged, the decrease in the average concentration of chlorophyll a from 30 to 15 μg L?1 would correspond to an increase in the depth of light penetration necessary for seagrass survival (>10 percent incident light) from 1.0 to 1.5 m, which, on a relatively flat sea bed (slope of 2 m/km), would increase the area potentially available for seagram recolonization by 0.25 km2/km of shoreline.  相似文献   

3.
Parallel determination of phytoplankton biomass and chlorophyll a concentration were made on spring and summer phytoplankton samples collected from 165 Florida lakes. There was a significant correlation between chlorophyll a concentration and phytoplankton biomass (r=0.80; P < 0.01). Chlorophyll content per unit phytoplankton biomass ranged over two orders of magnitude. Nitrogen seemed to be a major factor influencing the chlorophyll content of Florida algae. Multiple regression analyses indicated that phytoplankton biomass was dependent on both the total phosphorus and total nitrogen concentration. Nutrient-phytoplankton and Secchi-phytoplankton relationships for the Florida lakes had higher coefficients of determination if chlorophyll a concentrations rather than phytoplankton biomass data were used in regression analyses.  相似文献   

4.
ABSTRACT. Laboratory and field studies were initiated to evaluate at regular intervals by 14C and chlorophyll enrichment bioassay some of the nutrients, particularly ammonia, that might limit phytoplankton photosynthesis in two central Virginia ponds. Preliminary comparisons of the phytoplankton, their production, and the chemical characteristics of the water were determined. Ammonia, phosphate, nitrate, iron, carbon dioxide, silica and chloride differed most markedly among the various nutrients analyzed. Investigations were continued to compare the validity of using field and laboratory ecosystem work to predict changes in trophic levels resulting from nutrient enrichment, i.e., eutrophication. Laboratory experiments using aquatic microecosystems and field experiments employing in situ plastic cylinders and battery jars support the view that ammonia is a key factor regulating “trophic” features in these two ponds.  相似文献   

5.
This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2 indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete‐lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.  相似文献   

6.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

7.
ABSTRACT: It is suggested that new impoundments undergo an initial period of trophic upsurge lasting one to three years because of organic detritus and inorganic nutrients from the inundated basin. The new Monksville Reservoir in Passaic County, New Jersey, provided an opportunity to study the accelerated transformation of the Wanaque River into a 200-ha lake and to compare productivity with the older Wanaque Reservoir located immediately downstream. A one-year investigation of both reservoirs was conducted during 1988. The primary productivity (0.547 g C m?2 d?1) of the new Monksville Reservoir was not significantly different from that of the established Wanaque Reservoir (0.668 g C m?2 d?1). Mean surface chlorophyll a concentrations were similar (3.0–4.0 μg 1?1), although the Monksville Reservoir exhibited more pronounced chlorophyll peaks in spring and late autumn. Phytoplankton and zooplankton populations were consistently larger and fluctuated sharply in the Monksville Reservoir. Both reservoirs became thermally stratified, but only the Monksville Reservoir developed a metalimnetic dissolved oxygen minimum. The results demonstrated that the predicted trophic upsurge in the new reservoir did not occur in the first year therefore, the ecosystem dynamics did not fit the model for larger reservoirs.  相似文献   

8.
ABSTRACT: Few hydrological models are applicable to pine flat-woods which are a mosaic of pine plantations and cypress swamps. Unique features of this system include ephemeral sheet flow, shallow dynamic ground water table, high rainfall and evapotranspiration, and high infiltration rates. A FLATWOODS model has been developed specifically for the cypress wetland-pine upland landscape by integrating a 2-D ground water model, a Variable-Source-Area (VAS)-based surface flow model, an evapotranspiration (ET) model, and an unsaturated water flow model. The FLATWOODS model utilizes a distributed approach by dividing the entire simulation domain into regular cells. It has the capability to continuously simulate the daily values of ground water table depth, ET, and soil moisture content distributions in a watershed. The model has been calibrated and validated with a 15-year runoff and a four-year ground water table data set from two different pine flat woods research watersheds in northern Florida. This model may be used for predicting hydrologic impacts of different forest management practices in the coastal regions.  相似文献   

9.
ABSTRACT: A survey of 31 Florida spring-runs was conducted to estimate their submerged macrophyte standing crop and primary productivity. The standing crops of submerged vegetation were not significantly (p > 0.05) correlated to either total nitrogen (r = 0) or total phosphorus (r =?0.20) concentrations, but standing crops were significantly (p < 0.01) correlated to the percentage of the spring-run's water surface shaded by marginal vegetation (r =?0.76). Maximum daily rates of primary productivity were positively correlated with average submerged macrophyte standing crops (r = 0.81; p < 0.001) and inversely correlated with the degree of shading by marginal vegetation (r =? 0.43; p < 0.05).  相似文献   

10.
ABSTRACT: Florida water resources are among the most abundant in the United States, with Florida receiving the second‐highest mean annual rainfall of all states. However, water supply issues have troubled the state due to the highly variable spatial and temporal distributions of water supply and demand, and they are aggravated by the population's preference for settling in coastal regions where freshwater resources are scarce. Historically, the competing issues of water resource development and natural systems protection have placed water management agencies and local governments at odds. In 1997, the Florida Legislature enacted several major changes to Florida water law in an attempt to improve water resource planning and protection. This paper briefly reviews the history of water management in Florida with an emphasis on decisions culminating in the 1997 legislation, which requires the development of minimum flows and levels. Also examined is the impact of the 1997 law on water management. Efforts made to comply with legislative mandates are summarized; these include, to date, establishment of minimum flows and levels on 209 water bodies and budgeting in excess of $1.4 billion for water resource development projects.  相似文献   

11.
ABSTRACT: Filtering efficiency of the fathead minnow (Pimephales promelas), gizzard shad (Dorosoma cepedianum), carp (Cyprinus carpio), and a freshwater mussel (Elliptio coinpianata) was measured in field and laboratory trials to assess the ability of each species to control phytoplankton and suspended solid densities. All fish species tested were ineffective filterers and generally increased, rather than suppressed, algal and suspended solid concentrations. Filtering efficiencies of fish varied between -354 and 84 percent, depending on the size, shape, abundance, palatability, composition, and resistance to digestion of the particles. Because of poor filtering abilities, unpredictable feeding habits, and sensitivity to stress, the fish species examined are not effective biological controls in waste lagoons. In contrast, the freshwater mussel Elliptio was a highly effective control organism, averaging 66 percent filtering efficiency over a wide size range of algal and suspended particles. Filtration efficiency was positively correlated with mussel density. Elliptio was efficient at filtering small particles, which are particularly difficult to remove. Mean filtration rates ranged from 53 to 134 ml/mussel/h depending on the algal species consumed and algal densities (range 50–180,000 cells/ml) and 3 mg/L/mussel/h on suspended solids (range 14 to 112 mg/L). Water clarification was facilitated by both direct consumption and pseudofeces deposition. Elliptio and probably other mussel species can effectively control algae and suspended solids in wastewater lagoons and eutrophic lakes, if environmental conditions, especially dissolved oxygen levels, are suitable (>5 mg/L) for their survival.  相似文献   

12.
ABSTRACT: Intact riparian zones are the product of an incredibly complex multitude of linkages between the geomorphic, hydrologic, and biotiè features of the ecosystem. Land‐use activities that sever or alter these linkages result in ecosystem degradation. We examined the relationship between riparian vegetation and channel morphology by sampling species composition and herbaceous root biomass in incised (down‐cut and widened) versus unincised (intact) sections of unconstrained reaches in three headwater streams in northeastern Oregon. Incision resulted in a compositional shift from wetland‐obligate plant species to those adapted to drier environments. Root biomass was approximately two times greater in unincised sections than incised sections and decreased with depth more rapidly in incised sections than in unincised sections. Total root biomass ranged from 2,153 g m‐2 to 4,759 g m‐2 in unincised sections and from 1,107 g m‐2 to 2,215 g m‐2 in incised sections. In unincised sections less than 50 percent of the total root biomass was found in the top 10 cm, with approximately 20 percent in successive 10‐cm depth increments. In contrast, incised sections had greater than 60 percent of the total root biomass in the top 10 cm, approximately 15 percent in the 10 to 20 cm depth, less than 15 percent in the 20 to 30 cm depth, and less than 10 percent in the 30 to 40 cm depth. This distribution of root biomass suggests a positive feedback between vegetation and channel incision: as incision progresses, there is a loss of hydrologic connectivity, which causes a shift to a drier vegetation assemblage and decreased root structure, resulting in a reduced erosive resistance capacity in the lower zone of the streambank, thereby allowing further incision and widening.  相似文献   

13.
ABSTRACT: Seventy-three in situ primary productivity experiments over a six-month period in hypereutrophic Onondaga Lake near Syracuse, New York, demonstrated variations in the light saturation parameter, Ip, which in part describes the interaction between productivity and light. Substantial variations in Ip were observed (coefficient of variation = 60 percent). Variations in Ip were significantly correlated (greater than 99 percent confidence level) with temperature (°C). An Arrhenius-type relationship (Ip= 1.312 × 1.088 (T-20)) accounted for approximately 37 percent of the variation in Ip and may be appropriate for other systems dominated by green algae.  相似文献   

14.
ABSTRACT: Following an enclosure of a sink-hole connecting Lake Tarpon to the Gulf of Mexico, the chloride concentration of lake waters decreased. Water and chloride budgets for the lake in 1975 were prepared, and predictions using the model of Lerman and Brunskill (1971) were made as to the time required for the lake to achieve fresh water status. Model verification indicated good agreement with predictions in 1976; however, data on [C1-] for 1977 and 1978 are not as supportive of the model used. The information concerning the Lake Tarpon watershed provided by this latter fact is discussed.  相似文献   

15.
ABSTRACT: This study was conducted in the Klamath Basin of southwestern Oregon to evaluate the dependency of riparian plant communities upon infrequent flooding. Plant communities were sampled with 1 m2 quadrats along established cross‐sections. Data collected for purposes of hydraulic modeling included channel and floodplain elevations (i.e., cross‐sectional profiles) and water surface elevations associated with specific discharges. The elevational distribution of hydrophytic plant communities relative to modeled return periods provided the basis for establishing relationships between these variables for nine sites. Results indicate that, on average, a peak flow frequency of 4.6 years (range of 3.1 to 7.6 years) was needed to sustain riparian plant communities at seven of nine sites. At two sites, results indicated return periods of more than 25 years were needed; these results possibly were influenced by local geomorphic conditions (a narrow steep channel in one case and an incised channel in the other). Overall, these results tend to confirm a strong dependency of riparian plant communities on overbank flows.  相似文献   

16.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

17.
ABSTRACT: Accurate estimates of evapotranspiration from areas dominated by wetland vegetation are needed in the water budget of the Upper St. Johns River Basin. However, local data on evapotranspiration rates, especially in wetland environments, were lacking in the project area. In response to this need, the St. Johns River Water Management District collected evapotranspiration field data in Fort Drum Marsh Conservation Area over the period 1996 through 1999. Three large lysimeters were installed to measure the evapotranspiration from different wetland environments: sawgrass (Cladium jamaicense), cattail (Typha domingensis), and open water. In addition, pan evaporation was measured with a standard class “A” pan. Concurrently, meteorological data including rainfall, solar radiation, wind speed, relative humidity, air temperature, and atmospheric pressure were collected. By comparing computed evapotranspiration rates with those measured in the lysimeters, parameters in the Penman‐Monteith, the Priestley‐Taylor, and Reference‐ET methods, and evaporation pan coefficients were estimated for monthly and seasonal cycles. The results from the data collected in this study show that mean monthly evapotranspiration rates, computed by the different methods, are relatively close. From a practical point of view, results indicate that the evaporation pan can be used equally well as the more complex and data‐intensive methods. This paper presents the measured evapotranspiration rates, evaporation pan coefficients, and the estimated parameter values for three different methods to compute evapotranspiration in the project area. Since local data on evaporation are often scarce or lacking, this information may be useful to watershed hydrologists for practical application in other project regions.  相似文献   

18.
ABSTRACT: Runoff and ground-water samples were collected from four ombrotrophic bogs, representing undisturbed and drained/harvested conditions, at two-week intervals during the summer of 1984. Analyses of samples for water quality parameters revealed significant (P < 0.05 level) increases in specific conductance, NH4+-N, total dissolved P, Mg, K, and Na and a decrease in the E4:E6 ratio (suggesting increased proportions of humic acid) associated with drainage. There were no significant changes in dissolved organic carbon, Ca concentrations, or pH. Comparison of samples collected before, during, and after ditching showed increases in the dissolved organic carbon, NH4+-N, total dissolved P, K, and Na and a decrease in the E4:E6 ratio, but these changes were short lived; water quality returned to preditching values after about a week. The observed changes in water quality are small, probably because the peat is very acid (pH 3.0 to 4.5).  相似文献   

19.
ABSTRACT In many impoundment dynamic water quality models, the growth of two or more ecologic groups of phytoplankton may be simulated. These ecologic groups are differentiated by growth rates, temperature tolerances, settling rates, and the Michaelis-Menten half saturation constants for necessary nutrients. In this investigation, the effect of variations in the Michaelis-Menten half saturation constant for the limiting nutrient when two competing ecologic groups of algae are simulated is examined. In an idealized case, it is demonstrated that uncertainty in the half saturation constant for the limiting nutrient for one ecologic group of algae can significantly affect the simulation results and in some cases could lead to a poorly designed impoundment restoration program.  相似文献   

20.
ABSTRACT: An application of the receiving water block of the EPA Storm Water management Model (SWMM) is presented to quantify water quality impacts and evaluated control alternatives for a 208 areawide waste water management plan in Volusia Country, Florida. The water quality impact analyses were conducted for dry-and wet-weather conditions to simulate dissolved oxygen (DO), chlorides, total nitrogen (TN), and total phosphorus (TP) in the Halifax Rivers, Florida, a 40-kilometer-long tidal estuary located on the Atlantic coast of Florida near Daytona Beach. Dry-weather analysis was performed using conventional 7-day, 10-year low flow conditions to determine a set of unit transfer coefficients which estimate the pollutant concentration transferred to any point in the estuary from a constant unit discharge of pollutants at the existing waste water treatment plant outfall locations. Wet-weather analysis was performed by continuous simulation of a typical three-month summer wet season in Florida. Three-month cumulative duration curves of DO, TN and TP concentrations were constructed to estimate the relative value of controlling urban runoff of waste water treatment plant effluent on the Halifax River. The three-month continuous simulation indicated that the greatest change in DO, TN, and TP duration curves is possible by abatement of waste water treatment plant pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号