首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT: Four years of monthly freshwater discharge and constituent concentration data from three tributaries were related to a concurrent series of data for three segments of the St. Lucie Estuary in South Florida using multiple regression and time-series analysis techniques. Water quality parameters examined were dissolved inorganic and total nitrogen and phosphorus, chlorophyll a, total suspended solids, turbidity, and color. On monthly time scales, a multiple regression, which included freshwater discharge, freshwater constituent concentration, and dilution with ocean water (salinity) as independent variables, explained 50 percent or less of the variability in estuarine constituents. No single independent variable explained more variation than another. By contrast, on seasonal (wet, dry) time scales, freshwater discharge explained the bulk of variation in estuarine water quality (up to 93 percent). On monthly time scales, variability in concentrations of nutrients and other constituents may be largely controlled by processes internal to the system. At seasonal time scales, freshwater discharge appears to drive variability in most estuarine water quality parameters examined. Results indicate that management of tributary input on a seasonal basis, with the expectation of achieving seasonal concentration goals in the estuary, would have a higher probability of success than managing on a monthly basis.  相似文献   

2.
/ Freshwater inflow is one of the most influential landscape processes affecting community structure and function in lagoons, estuaries, and deltas of the world; nevertheless there are few reviews of coastal impacts associated with altered freshwater inputs. A conceptual model of the possible influences of freshwater inflows on biogeochemical and trophic interactions was used to structure this review, evaluate dominant effects, and discuss tools for coastal management. Studies in the Gulf of Mexico were used to exemplify problems commonly encountered by coastal zone managers and scientists around the world. Landscape alteration, impacting the timing and volume of freshwater inflow, was found to be the most common stress on estuarine systems. Poorly planned upstream landscape alterations can impact wetland and open-water salinity patterns, nutrients, sediment fertility, bottom topography, dissolved oxygen, and concentrations of xenobiotics. These, in turn, influence productivity, structure, and behavior of coastal plant and animal populations. Common biogeochemical impacts include excessive stratification, eutrophication, sediment deprivation, hypoxia, and contamination. Common biological impacts include reduction in livable habitats, promotion of "exotic" species, and decreased diversity. New multiobjective statistical models and dynamic landscape simulations, used to conduct policy-relevant experiments and integrate a wide variety of coastal data for freshwater inflow management, assume that optimum estuarine productivity and diversity is found somewhere between the stress associated with altered freshwater flow and the subsidy associated with natural flow. These models attempt to maximize the area of spatial overlap where favorable dynamic substrates, such as salinity, coincide with favorable fixed substrates, such as bottom topography. Based upon this principle of spatial overlap, a statistical performance model demonstrates how population vitality measurements (growth, survival, and reproduction) can be used to define sediment, freshwater, and nutrient loading limits. Similarly, a spatially articulate landscape simulation model demonstrates how cumulative impacts and ecosystem processes can be predicted as a function of changes in freshwater, sediment, and nutrient inflows.KEY WORDS: Resource management; Landscape impacts; Freshwater discharge; Coastal, ecosystem models; Coastal wetlands  相似文献   

3.
A quasi-steady state numerical ecosystem model was designed to help evaluate the potential impact of various scenarios of effluent treatment and of a landfill on the distribution of phytoplankton and inorganic nutrients in Los Angeles and Long Beach harbors Formulations included (a) tidal circulation, (b) phytoplankton growth and oxygen production as a function of temperature, light, and nutrients, (c) grazing by zooplankton, (d) respiration and nutrient regeneration by the benthos, (e) biochemical oxidation of organics, and (f) nitrification Phytoplankton nitrogen, ammonium, nitrate, and oxygen were the state variables, which were simulated with diel and spatial variability for a range of seasonal conditions. Physical circulation was indicated to be a primary factor governing the distribution of state variables, and the landfill resulted in significant alterations. Simulated phytoplankton stocks approximated the upper range of reported concentrations, indicating a satisfactory prediction of bloom conditions. The model indicated that while light may usually regulate maximum phytoplankton levels, under bloom conditions nutrient limitation may also be important Most of the outer Los Angeles Harbor was affected by the effluent, as shown by comparison to the case with zero input Simulations for secondary versus primary treatment converged a short distance from the outfall in response to high BOD oxidation rates. In general, total phytoplankton crop was not greatly affected by the change from primary to secondary treatment, and predation on phytoplankton was small  相似文献   

4.
ABSTRACT: Vertical attenuation of photosynthetically active radiation (PAR) in clear waters of central Florida theoretically can vary almost 50 percent during a sunny summer day as a result of changing solar elevation. We used a simple formula to partially adjust the attenuation coefficient in Tampa Bay and Charlotte Harbor for changing solar elevation of the direct beam and then used multiple regression analysis to estimate the relative contribution of different water properties or constituents to the adjusted attenuation coefficient, kadj. Color, on an average, was responsible for 18 percent of kadj, chlorophyll a for 21 percent, nonchiorophyll suspended matter for 55 percent, and seawater for the remaining 6 percent. In both estuaries, kadj increased with decreasing salinity as a result of freshwater runoff adding color, suspended matter, and nutrients. Nutrients affected attenuation by stimulating phytoplankton growth and increasing concentrations of chlorophyll a. Reduced nutrient loading to upper Tampa Bay (Hilisborough Bay) in the early to mid-1980's appears to have decreased concentrations of chlorophyll a, increased water clarity, and increased seagrass recolonization. Assuming other attenuating substances remained unchanged, the decrease in the average concentration of chlorophyll a from 30 to 15 μg L?1 would correspond to an increase in the depth of light penetration necessary for seagrass survival (>10 percent incident light) from 1.0 to 1.5 m, which, on a relatively flat sea bed (slope of 2 m/km), would increase the area potentially available for seagram recolonization by 0.25 km2/km of shoreline.  相似文献   

5.
ABSTRACT: The sources and distribution of nutrients in the Charlotte Harbor estuarine system were evaluated using nutrient dilution curve models. Except for ammonia, nutrient concentrations were highest and most variable in the rivers, and generally decreased with increasing salinity. Observed and theoretical dilution curves for phosphorus were generally in close agreement, which suggests conservative behavior. Phosphorus concentrations sagged below a straight line because phosphorus-rich water from the upper Peace River basin was diluted by tributaries in the lower basin. The concentrations of dissolved silica appeared to be conservative on some occasions. On other occasions, dissolved silica appeared to be removed at low salimties or released at higher salinities. Concentrations of ammonia were highly variable along the salinity gradient, presumably because of variations in ammonia regeneration and uptake. Concentrations of nitrite plus nitrate were well below conservative dilution curves, probably due to phy-toplankton uptake. At salinities greater than 20%, nitrite plus nitrate concentrations were usually at or below the detection limit and may limit phytoplankton productivity. Projected increased nitrogen loadings from urban development in the basin would favor undesirable increases in phytoplankton and benthic algal growth in waters where sufficient light is available.  相似文献   

6.
ABSTRACT: Lake Okeechobee, the third largest lake in the United States, is a shallow, mixing basin with annual total phosphorus concentrations ranging from 50–100 μg P/L. Data, mainly from unpublished agency reports, are analyzed to determine if nutrients limit phytoplankton, to describe spatial and temporal variability in trophic state parameters, and to evaluate conclusions obtained from empirical trophic state models. Algal bioassay experiments that have been used to assess nutrient limitation have produced equivocal results. However, seasonal minima in orthophosphorus and inorganic nitrogen indicate that both nutrients may be limiting seasonally. Strong, but reverse north-south gradients and large seasonal changes in phosphorus and nitrogen concentrations, show that empirical models based on annual phosphorus loadings or concentrations are not adequate to predict chlorophyll concentrations or other trophic state variables. Spatially-segmented, multi-class phytoplankton-nutrient models of seasonal phytoplankton responses that are coupled with hydrodynamic models may provide predictability in assessing effects of changing nutrient loads on phytoplankton composition and standing crop. Successful modeling efforts of responses to nutrients also must deal with resuspended and benthic algae, periphyton, and emergent and submergent aquatic plants that must play important trophic roles in some of the lake basin.  相似文献   

7.
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measurements to calculate the light attenuation coefficient by considering the effects of suspended sediment and chlorophyll. The processes of adsorption–desorption of nutrients by sediment were described using the Langmuir Equation. The release rates of nutrients from the bed were calculated based on the concentration gradient across the water–sediment interface and other variables including pH, temperature and dissolved oxygen concentration.The model was calibrated and validated by applying it to simulate the concentrations of chlorophyll and nutrients in a natural oxbow lake in Mississippi Delta. The simulated time series of phytoplankton (as chlorophyll) and nutrient concentrations were generally in agreement with field observations. Sensitivity analyses were conducted to demonstrate the impacts of varying suspended sediment concentration on lake chlorophyll levels.  相似文献   

8.
ABSTRACT The effect of hydrologic and chemical processes on salinization of stored waters was determined for two small floodwater-retarding structures located in western Oklahoma. One structure, already designed to accommodate a large influx of sediment, was further overdesigned hydrologically by upstream diversion of approximately one-half the inflow. Over a 2-year period, the total salinity of stored waters increased approximately 22 times and the stored water volume decreased to 1/33 its initial volume in the overdesigned structure, while both volume and salinity of stored waters remained comparatively stable in the other structure. The lack of sufficient dilution by better quality surface runoff and the increased residence time of water in the impoundment apparently caused most of the salinity increase. The bulk of the salt load entering the over-designed structure, to be concentrated later by evaporation, was associated with base rather than storm inflow. After base inflow ceased, substantial losses of salt load and stored water occurred concurrently. The loss was not adequately explained by chemical precipitation in association with evaporation. Seepage and evaporation-associated variables appeared to account for much of the hydrologically unexplained loss of stored waters.  相似文献   

9.
Oyster beds are disappearing worldwide through a combination of over-harvesting, diseases, and salinity alterations in the coastal zone. Sensitivity of oysters to variable discharge and salinity is particularly acute in small sub-tropical estuaries subject to regulated freshwater releases. South Florida has sub-tropical estuaries where watershed flood control sometimes results in excessive freshwater inflow to estuaries during the wet season (May–Oct) and reduced discharge and increased salinities in the dry season (Nov–Apr). The potential to reserve freshwater accumulated during the wet season could offer the capacity to regulate freshwater at different temporal scales, thus optimizing salinity conditions for estuarine biota. The goal of this study was to use simulation modeling to explore the effects of freshwater inflows and salinity on adult oyster survival in the Caloosahatchee River Estuary (CRE) in southwest Florida. Water managers derived three different freshwater inflow scenarios for the CRE based on historical and modified watershed attributes for the time period of 1965–2000. Three different salinity time series were generated from the inflow scenarios at each of three sites in the lower CRE and used to conduct nine different oyster simulations. Overall, the predicted densities of adult oysters in the upstream site were 3–4 times greater in seasons that experienced reduced freshwater inflow (e.g., increased salinity) with oyster density in the lower estuary much less influenced by the inflows. Potential storage of freshwater reduced the frequency of extreme flows in the wet season and helped to maintain minimum inflow in the dry season near the estuarine mouth. Analyses of inflows indicated that discharges ranging from 0 to 1,500 cfs could promote favorable salinities of 10–25 in the lower CRE depending on wet versus dry season climatic conditions. This range of inflows is similar to that derived in other studies of the CRE and emphasizes the value of simulation models to help prescribe freshwater releases which benefit estuarine biota.  相似文献   

10.
ABSTRACT: The spatial changes in abiotic and biotic variables from riverine to lacustrine areas characterized by the river-lake concept of reservoir function was applied to the Tomhannock Reservoir, Rensselaer County, New York. To identify these longitudinal gradients, a two-year investigation (May 1991 to October 1992) was conducted to measure primary productivity, nutrient concentrations, chlorophyll α and phytoplankton biomass at three locations in the 705-ha water supply reservoir. Emphasis was placed on the measurement of primary production using the carbon-14 artificial incubator (photosynthetron) technique. The average annual production in 1992 was 247.3 gm?2 245 d?1, ranging from 52 to 2677 mg C m?2. Mean alphaB (assimilation efficiency), PBm (assimilation number), and Ik (saturation irradiance) were 4.40 mg C mgChl?1 E?1 m?2, 3.82 mg C mgChl?1 h?1, and 236.5 μE m?2 s?1, respectively. Neither seasonal nor spatial variability of these photosynethetic parameters were observed. Except for Secchi depth, distinct longitudinal zones from river inflow to darn were not statistically demonstrated in the Tomhannock Reservoir. Mean extinction coefficient, chlorophyll α and total phosphorus concentrations decreased; Secchi transparency and phytoplankton biomass increased; while primary productivity and dissolved inorganic nitrogen concentration remained the same from headwater to darn. These baseline data will be used to assess the future effectiveness of best management practices (BMPs) recently instituted on selected watershed farmland in an attempt to reduce the detrimental impact of agricultural activities on drinking water quality.  相似文献   

11.
ABSTRACT: Concentrations of total nitrogen, total phosphorus, and total organic carbon in the Loxahatchee River estuary decreased with increasing salinity in a manner indicating that mixing and dilution of freshwater by seawater was the primary process controlling the down-stream concentrations of nutrients. Most of the nutrients in the surface freshwater inflows entered the estuary from five major tributaries; however, about 10 percent of the total nitrogen and 32 percent of the total phosphorus were from urban stormwater runoff. The input of nutrients was highly seasonal and storm related. During a 61-day period of above average rainfall that included Tropical Storm Dennis, the major tributaries discharged 2.7 metric tons of total phosphorus, 75 metric tons of total nitrogen, and 1,000 metric tons of organic carbon to the estuary. This period accounted for more than half of the total nutrient load from the major tributaries during the 1981 water year (October 1, 1980, through September 30, 1981). Inorganic phosphorus and nitrogen increased relative to total phosphorus and nitrogen during storm runoff. Nutrient yield from the basin, expressed as grams per square meter of basin area, was relatively low. However, because the basin area (544 square kilometers) is large compared with the volume of the estuary, the basin might be expected to contribute significantly to estuarine enrichment were it not for tidal flushing. Approximately 60 percent of the total volume of the estuary is flushed on each tide. Because the estuary is well flushed, it probably has a large tolerance for nutrient loading.  相似文献   

12.
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii.  相似文献   

13.
Based on limited data for the removal of radioactive (99)Tc by freshwater phytoplankton, it has been thought that phytoplankton are unsuitable for remediation of (99)Tc-contaminated waters. This work sought to verify the validity of this assumption by studying the removal of (99)TcO(4)(-) by freshwater and brackish water phytoplankton. The phytoplankton used were Euglena gracilis, Chlamydomonas pulsatilla, Chlorella vulgaris, and Spirulina platensis. Each of them was incubated for 63 d, and the removal of (99)Tc from solution was periodically determined. Significant removal of (99)Tc was observed only for E. gracilis, and the maximum removal was 70% of the total (99)Tc added. The killed cells of E. gracilis, however, removed hardly any (99)Tc. When E. gracilis cells were washed with fresh culture medium, only 13% of the total (99)Tc was desorbed. These results suggested that intracellular uptake of (99)Tc by E. gracilis occurred. These results are the first documented example of significant removal of (99)Tc by planktonic microalgae.  相似文献   

14.
A series of statistical analyses were used to identify temporal and spatial patterns in the phytoplankton and nutrient dynamics of Lake Washington, an mesotrophic lake in Washington State (USA). These analyses were based on fortnightly or monthly samples of water temperature, Secchi transparency, ammonium (NH4), nitrate (NO3), inorganic phosphorus (IP), total nitrogen (TN), total phosphorus (TP), dissolved oxygen (DO), pH and chlorophyll a (chl a) collected during 1995–2000 from 12 stations. Lake Washington has a very consistent and pronounced annual spring diatom bloom which occurs from March to May. During this bloom, epilimnetic chl a concentrations peak on average at 10 μg/L, which is 3 times higher than chl a concentrations typically seen during summer stratified conditions. The spring bloom on average comprised 62% diatoms, 21% chlorophytes and 8% cyanobacteria. During summer stratification, diatoms comprised 26% of the phytoplankton community, chlorophytes 37% and cyanobacteria 25%. Cryptophytes comprised approximately 8% of the community throughout the year. Overall, 6 phytoplankton genera (i.e., Aulacoseira, Fragilaria, Cryptomonas, Asterionella, Stephanodiscus, and Ankistrodesmus) cumulatively accounted for over 50% of the community. These analyses also suggest that the phytoplankton community strongly influences the seasonality of NO3, IP, DO, pH and water clarity. According to a MANOVA, seasonal fluctuations explained 40% of the total variability for the major parameters, spatial heterogeneity explained 10% of variability, and the seasonal-spatial interaction explained 10% of variability. Distinctive patterns were identified between offshore and inshore sampling stations. The results of our analyses also suggest that spatial variability was substantial, but much smaller than temporal variability.  相似文献   

15.
A hydrodynamic–oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another. Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge. Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.  相似文献   

16.
ABSTRACT: Long‐term freshwater transport is an important factor affecting estuarine aquatic ecosystems. In this study, a primitive equation, prognostic, three‐dimensional, hydrodynamic model was applied to Apalachicola Bay, Florida, for the summer and fall seasons of 1993. In response to the river freshwater discharge, tide, and wind forces, the model simulations were used to characterize the long‐term freshwater transport processes in the bay. Analysis of spatial distributions of seasonal average salinity and currents shows that the long‐term freshwater transport was strongly affected by the forcing functions of wind and density gradient in the bay. Average freshwater input was approximately the same in the summer and fall seasons of 1993. However, in the summer season, more freshwater moved to the east direction due to the predominant wind from the west, while in the fall season more freshwater moved to the west in response to the wind primarily from the east. The water column was strongly stratified near the river mouth, and it gradually changed to well mixing near the ocean boundaries. Vertical stratification in the bay changed due to wind‐induced mixing and mass transport. Due to the density gradient effect, surface residual currents carrying fresher water were in the direction from the river toward the Gulf, while the bottom residual currents with saltier water entered the bay from the Gulf of Mexico.  相似文献   

17.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

18.
A hydrodynamic-oyster population model was developed to assess the effect of changes in freshwater inflow on oyster populations in Galveston Bay, Texas, USA. The population model includes the effects of environmental conditions, predators, and the oyster parasite, Perkinsus marinus, on oyster populations. The hydrodynamic model includes the effects of wind stress, river runoff, tides, and oceanic exchange on the circulation of the bay. Simulations were run for low, mean, and high freshwater inflow conditions under the present (1993) hydrology and predicted hydrologies for 2024 and 2049 that include both changes in total freshwater inflow and diversions of freshwater from one primary drainage basin to another.Freshwater diversion to supply the Houston metropolitan area is predicted to negatively impact oyster production in Galveston Bay. Fecundity and larval survivorship both decline. Mortality from Perkinsus marinus increases, but to a lesser extent. A larger negative impact in 2049 relative to 2024 originates from the larger drop in fecundity under that hydrology. Changes in recruitment and mortality, resulting in lowered oyster abundance, occur because the bay volume available for mixing freshwater input from the San Jacinto and Buffalo Bayou drainage basins that drain metropolitan Houston is small in comparison to the volume of Trinity Bay that presently receives the bulk of the bay's freshwater inflow. A smaller volume for mixing results in salinities that decline more rapidly and to a greater extent under conditions of high freshwater discharge.Thus, the decline in oyster abundance results from a disequilibrium between geography and salinity brought about by freshwater diversion. Although the bay hydrology shifts, available hard substrate does not. The simulations stress the fact that it is not just the well-appreciated reduction in freshwater inflow that can result in decreased oyster production. Changing the location of freshwater inflow can also significantly impact the bay environment, even if the total amount of freshwater inflow does not change.  相似文献   

19.
A new system composed of a sequential flat plate and parabolic dish solar collector was applied to enhance the solar desalination productivity. Heated saline water was desalinated using the evaporation/condensation principle and an effort was made to achieve higher distillate production compared to previous studies. Desalination efficiency values were calculated between 23% and 57%. Maximum desalinated water productions were obtained as 1,038 mL/m2.h in autumn and 1,402 mL/m2.h in summer. The cost of solar desalination system was found as economically feasible with 3 years’ payback period and the produced water cost of 0.014 $/L. Physicochemical analyses revealed that as a result of the desalination process, salinity level decreased from 35.6‰ to 0.0–0.1‰, chloride concentration decreased from 21,407 mg/L to 10 mg/L, and electrical conductivity decreased from 53.1 mS/cm to 0.11 mS/cm.  相似文献   

20.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号