首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model.  相似文献   

2.
成都市某区暴雨径流过程模拟分析   总被引:1,自引:0,他引:1  
为提高城市雨洪管理的效率,最大限度地减少暴雨洪水带来的危害,针对城市防洪排涝的需要,在分析成都市某区降雨径流规律后,建立了该区暴雨径流模拟的数学模型,有助于采取相应措施充分利用雨洪资源。通过对雨洪过程模拟验证表明,模型适合该区域的实际情况,具有一定的合理性和可靠性。  相似文献   

3.
ABSTRACT A synthetic storm rainfall hyetograph for a one-year design frequency is derived from the one-year intensity-duration curve developed for Cincinnati, Ohio. Detailed rainfall data for a three-year period were collected from three raingages triangulating the Bloody Run Sewer Watershed, an urban drainage areas of 2380 acres'in Cincinnati, Ohio. The advancement of the synthetic storm pattern is obtained from an analysis of the antecedent precipitation immediately preceding the maximum period of three selected durations. Rains which produced excessive runoff at least for some duration were considered only. The same approach can be used for other design frequencies. The purpose of this study is to provide synthetic storm hyetographs to be used as input in deterministic mathematical models simulating urban storm water runoff for the design, analysis and possible surcharge prediction of sewer systems.  相似文献   

4.
. Water Reservoir Systems were investigated for urban areas as an alternative or complement to storm water drainage systems for flood control which could provide benefits in water conservation and reduce drainage system costs. The study consisted of: (1) gathering of engineering data on the topographical, hydrological, and precipitation characteristics of the area and urban development and economic statistics  相似文献   

5.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

6.
ABSTRACT: Estimates were made of petroleum hydrocarbon pollution loadings reaching the Delaware Estuary by determining storm event loadings of hydrocarbons from four storm sewers, draining areas of different land uses. Although refinery effluents constituted the largest source of petroleum pollution in 1975, it appears that after completion of currently required treatment processes urban runoff will be the largest remaining source of petroleum pollution. The petroleum in urban runoff resembles used crankcase oil in composition and contains toxic chemicals such as polynuclear hydrocarbons. Further research is clearly desirable. Remedial programs to control such pollution may be warranted on the basis of information now available.  相似文献   

7.
ABSTRACT: Runoff Routing model (RORB) is a general model applicable to both rural and urban catchments. The performance of the model is illustrated through its simulation of flood runoff hydrographs in an urban catchment in Singapore. The essential feature of the model is the routing of rainfall excesses on subareas through some arrangement of concentrated storage elements, which represent the distribution of temporary storage of flood runoff on the watershed. This nonlinear routing procedure of the storage elements has two common parameters, kc and m. With the limited data available, these two parameter values were determined through calibration runs. The same set of values of kc and m were then used in the model to determine the runoff hydrographs of five other storms selected from the rainfall events between 1979 and 1981. It was found that the simulated runoff hydrographs matched reasonably well with the recorded hydrographs.  相似文献   

8.
ABSTRACT: Storm water runoff studies of three small basins (20, 40, and 58 acres) in the Fort Lauderdale area of Florida were conducted by the U.S. Geological Survey in 1974–78. The basins were homogeneously developed with land uses being: commercial, single family residential, and high traffic volume highway. Synchronized data were collected for rainfall, storm water discharge, storm water quality, and bulk precipitation (rainfall plus dry fallout) quality. Analysis of the storm water discharge data showed that most runoff was from impervious areas hydraulically connected to drain inlets. Regression analyses of the storm water discharge and water quality data indicated that storm loads from the single family residential area correlated strongly with peak discharge and length of antecedent dry periods. Storm loads from the highway area correlated strongly with rainfall and less strongly with peak discharge and antecedent dry periods. Storm loads from the commercial area correlated strongly with peak discharge and rainfall, and less strongly with antecedent dry periods. On a unit area basis, the single family residential area yielded the largest loads of nitrogen, phosphorus, and dissolved solids. The commercial area yielded the largest loads of lead, zinc, and chemical oxygen demand. Yields of carbon were about the same for the three areas. Constituent loadings derived directly from the atmosphere were estimated on the basis of bulk precipitation samples and compared with storm runoff loads from the highway and commercial areas.  相似文献   

9.
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases.  相似文献   

10.
: This paper presents solutions to the one-dimensional, transient conservation of mass equations for the coupled biochemical oxygen demand-dissolved oxygen (BOD-DO) reactions, based on the principle of superposition, for continuously discharging plane sources. The solutions are applied within the framework of a continuous simulation model to allow the derivation of water quality frequency curves and frequency histograms of consecutive hourly dissolved oxygen violations, for any desired standard. Receiving water response is determined for waste inputs from urban wet weather, dry weather, and upstream sources. An application to Des Moines, Iowa, and Des Moines River indicated that urban storm water impacts on the stream can be masked in the cumulative frequency curve representation, but the benefits of storm water control are clearly shown in frequency histograms of the duration of consecutive stream standard violations.  相似文献   

11.
ABSTRACT: Increasingly, residential development in urbanizing areas is accomplished by large housing projects, composed of clusters of townhouses or garden partments. It is hypothesized that the runoff from such developments should carry more pollution than that from the same number of housing units on separate plots, because the runoff is conveyed directly to drainage channels rather than being drained across lawns and gardens, which may absorb part of the pollutants. In order to evaluate this effect, storm event data were obtained from a planned unit development near Hightstown, N. J., using samples taken every 10 minutes throughout the storm at two different storm sewers. Results show heavy metals pollution about what had been anticipated, in accordance with the hypothesis given above, and BOD ammonia and phosphates higher than predicted. The results are significant for areawide water quality planning in metropolitan areas, where projections of future pollution loadings depends upon the land use.  相似文献   

12.
ABSTRACT: Intensive temporal sampling of rainfall, surface runoff and subsurface drainage, and stream flow upstream and downstream of a suburban mall parking lot yielded expected patterns in time and space. Variations in temperature and conductivity showed strong dilution effects, while patterns of nine elemental concentrations in surface runoff showed a flushing effect early in the storm, following by dilution. Heavy nitrate loads in surface runoff were apparently from rainfall, not surficial sources. For the magnitude of storm studied and the existing study site, local impact on stream flow and water quality, like the run-off itself, is rather ephemeral, and dissipates after about five hours.  相似文献   

13.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

14.
A system study was conducted on the use of a large number of small reservoirs dispersed throughout an urban community as a means of storm water pollution control. The study was based on an area within the “new city” of Columbia, Maryland. Water collected and stored in the reservoirs is treated for release or use in meeting sub-potable and potable water demands in the community. Design and performance criteria were developed for such a system. A simulation model and a computerized evaluation technique were used to select the optimal locations and system configurations. The results of this study indicated that such a system would be less expensive than a conventional engineering approach to storm water pollution control. Further, the benefits derived from use of the storm water as a water supply can offset a portion of the cost of pollution control. Several secondary benefits also result from this concept including erosion and sediment control, storm flow dampening, and recreational facilities. A program is now underway to demonstrate this concept in Columbia, Maryland.  相似文献   

15.
The EPA Storm Water Management Model was used to model the effects of urban and agricultural development on storm water runoff from uplands bordering a Louisiana swamp forest. Using this model, we examined the effects of changing land use patterns. By 1995 it is projected that urban land on the uplands bordering the swamp will increase by 321 percent, primarily at the expense of land currently in agriculture. Simulation results indicate that urbanization will cause storm water runoff rates to be up to 4.2 times greater in 1995 than in 1975. Nutrient runoff will increase 28 percent for nitrogen (N) and 16 percent for phosphorus (P) during the same period. The environmental effects of these changes in the receiving swamp forest are examined.  相似文献   

16.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

17.
ABSTRACT: A computerized technique was developed to identify storm runoff episodes and calculate storm discharges, storm loads, and storm average concentrations for each event in datasets with up to 10,000 records. This technique was applied to four watersheds within the Lake Erie drainage basin and identified between 160 and 250 runoff events in each. Storm event loads and storm event mean concentrations were calculated for each runoff event for suspended solids, total phosphorus, soluble reactive phosphorus, nitrate, and total Kjeldahl nitrogen. The basic characteristics of the resulting data are described, as are systematic differences as a function of watershed size, seasonal differences, and trends over time. Many of the results of this study reflect the importance of nonpoint processes and improvements in agricultural best management practices in these watersheds.  相似文献   

18.
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms.  相似文献   

19.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

20.
ABSTRACT: The current dredge and fill practices in locating canals along the periphery of wetlands in south Florida are transforming natural basins that originally had primarily slower subsurface drainage to ones that discharge larger quantities of water faster, via a surface drainage system. The objective of this paper is to develop an analytical technique and a numerical model in quantifying the difference of surface and subsurface runoff before and after the construction of drainage canals, and for delineating the effects of drains on channel level and regional water tables in adjacent areas in south Florida. The surface runoff model is formulated on the climatic water balance technique, and the ground water model is treated as a one dimensional transient phenomenon that forms a nonlinear flow problem. Analytical solutions are derived through problem linearization. These two models are coupled to estimate the impact of drainage canals on the adjacent water table drawdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号