首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed.  相似文献   

2.
Storm water management contributes to flood hazard mitigation; but new approaches now being developed consider also the reduction in particulate pollution and stream erosion. Such approaches involve retardation of storm runoff, or detention programs of some kind, and detention basins are usually required if large storms are to be controlled. The usual concept is that future storms occurring after development should have no more adverse effect than similar storms would have had before development; but a number of different criteria are being used. If control of storms of different sizes is required, only a small amount of additional capacity is required to obtain retention of particulate pollution in the same basin. In at least three different parts of the country, such dual purpose detention basins are being required of developers. In such programs the developers bear the cost, the governmental contributions are not involved.  相似文献   

3.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

4.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

5.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

6.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   

7.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

8.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

9.
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model.  相似文献   

10.
ABSTRACT: The use of reservoirs and land treatments to manage streamflow for the maintenance or enhancement of instream flow values is a valid concept. Historically, large reservoirs have been used for flood control and water-supply regulation. Smaller structures have enjoyed widespread use for soil and water conservation in headwater areas. Where reservoir releases can be controlled, it is technically feasible to regulate flows for the enhancement of instream values. However, institutional and political obstacles may preclude the operation of some reservoirs for this purpose. Retention and detention structures and land treatments, implemented for soil and water conservation purposes, have often had favorable effects on the streamflow hydrograph. Decreases in peak flows and increases in low flows have been documented. Design concepts for runoff-control structures are discussed in relation to instream flow management objectives. Hydro-logic simulation is offered as a potential tool for project design and feasibility analysis.  相似文献   

11.
A diversion system has been designed to carry the flow from East Fork of Coal Creek around the area proposed for mining at Thunder Basin Coal Company's (TBCC) Coal Creek mine in Campbell County, Wyoming. This paper describes the field and analysis procedures necessary to prepare the diversion design and impact evaluation, and the innovative concepts developed for the diversion system design to minimize impacts on downstream channel stability. Under the proposed diversion system design, water from the East Basin of Coal Creek will be diverted at two locations. At one location, flow will be impounded by a small dam and decanted by a pump through a pipeline into East Fork at the location of the second diversion. At this location, a training dike will be placed across the stream channel to divert flows into a diversion channel. Gravity flow along the diversion channel will deliver water to a playa area which will be converted into a detention basin by placing a small dam across its southern end. Flows up to the magnitude of the 24-hour 2-year peak flow will be passed directly through the detention basin into Middle Fork with negligible attenuation of flow rates. For less frequent events, water will be stored in the detention basin in order to prevent velocities in Lower Middle Fork from exceeding the maximum permissible velocity above which scouring may occur. Evaporation and seepage losses from the diversion system were estimated to be small and should be more than offset by the addition of water from the playa drainage basin into the Coal Creek drainage. Velocities predicted for the Lower Middle Fork after-the diversion is constructed are expected to be low enough that significant erosion of the channel is not expected to occur.  相似文献   

12.
ABSTRACT. High percentage of imperviousness in the city is the source of storm runoff. Roof area contributes significantly to the imperviousness. An attempt to make use of roofs as urban flood control device and water conservation measure is advocated. Two different schemes, one for built-up industrial-commercial area, the other for residential area, are suggested. The former utilizes the roof as detention reservoir for flood control, the latter employs recharge pit to convert runoff into ground water resource. The proposed schemes are not only hydrologically, hydraulically and structurally sound but also economically feasible. It is worth considering in the future planning of urban renewal and urban development.  相似文献   

13.
ABSTRACT: To manage the first flush of storm runoff in urbanized areas, a diversion box and detention basin system has been proposed for a new storm sewer system or for retrofitting an existing system. A software package for a personal computer has been developed to facilitate the analysis and design of the system. Hydrographs and pollutographs are generated at the inlet and outlet of the diversion box and the detention basin. The peak outflow and peak pollutant concentrations are compared with the allowable outflow and pollutant concentration for urban stormwater quantity and quality management. The model is developed for both analysis and design purposes.  相似文献   

14.
ABSTRACT: This paper describes a methodology for the evaluation of water quality plans analogous to procedures used in flood control planning, where flood damage frequency curves provide the basis for determining flood control benefits. The proposed method uses continuous water quality simulation to develop long term information from which water quality frequency curves can be obtained. This frequency information allows the evaluation of the impact of proposed water quality control plans taking into consideration the variable nature of the water resource. Using treatment costs and other economic indicators of water quality, the frequency information can be used to estimate the cost-effectiveness and economic efficiency of alternative plans. The method is demonstrated in a semi-hypothetical environment; real hydrologic and climatic characteristics are assigned to a hypothetical watershed configuration. Alternative management plans are simulated and analyzed for both physical and economic impacts. The advantages of continuous simulation and its use in water quality planning are explored.  相似文献   

15.
The Keelung River Basin in northern Taiwan lies immediately upstream of the Taipei metropolitan area. The Shijr area is in the lower basin and is subject to frequent flooding. This work applies micromanagement and source control, including widely distributed infiltration and detention/ retention runoff retarding measures, in the Wudu watershed above Shijr. A method is also developed that combines a genetic algorithm and a rainfall runoff model to optimize the spatial distribution of runoff retarding facilities. Downstream of Wudu in the Shijr area, five dredging schemes are considered. If 10‐year flood flows cannot be confined in the channel, then a levee embankment that corresponds to the respective runoff retarding scheme will be required. The minimum total cost is considered in the rule to select from the regional flood mitigation alternatives. The results of this study reveal that runoff retarding facilities installed in the upper and middle parts of the watershed are most effective in reducing the flood peak. Moreover, as the cost of acquiring land for the levee embankment increases, installing runoff retarding measures in the upper portion of the watershed becomes more economical.  相似文献   

16.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

17.
Watershed management program on Santiago Island,Cape Verde   总被引:1,自引:0,他引:1  
The Watershed Management Program (WMP) was put into operation in early 1985 on Santiago Island, Cape Verde, with the stated purpose, “to develop and protect the soil and water resources of the Program-designated watersheds … to stabilize the natural environment and increase agricultural production potential in the Program area.” The approach to soil and water conservation in the program has been to build erosion and flood control structures (engineering approach) and plant trees (biological approach) to decrease rill and gully erosion, trap sediment behind control structures, provide flood protection, increase infiltration, increase fuelwood and fodder production, and increase water supplies for irrigation. There have been many successes resulting from specific management activities, but flawed approach or implementation in a few key areas has acted to impede the program's complete success, including lack of a scientific basis for evaluating its impact on soil and water conservation; poor design, placement, and maintenance of some major hydraulic structures; inadequate intervention in stabilizing farmlands or education of farmers and landowners in the need for and benefits of agroforestry; and incomplete integration of engineering and biological approaches.  相似文献   

18.
This article aims to measure the effects of a flood control project planned for the Chitose River Basin in Hokkaido Prefecture, Japan, using hedonic land price functions. In these functions, "annual expected depth of flood water" is introduced as an explanatory variable to represent the effect of the flood control project. Comparing the approach with the method of "the economic analysis of flood control projects", which has been a conventional evaluation method widely used in Japan, the efficiency and limitations of our approach are discussed.  相似文献   

19.
ABSTRACT: Proper economic evaluation of alternative plans will maximize the utility achieved from the resources available for water resource management. A knowledge of the frequency of occurrence of the events under study is necessary to fully utilize the advantages of economic evaluation in planning. Frequency information is widely used in flood control and water supply, but relatively unknown in water quality planning. A continuous, dynamic hydrologic and water quality model is presented to develop frequency curves for various water quality criteria. Results from the Denver Regional Water Quality Management Study are discussed as an example of the use of frequency analysis for economic evaluation of water quality management.  相似文献   

20.
In this paper, stormwater runoff from an urban watershed with combined sewer systems located in Daejeon metropolitan city, Korea, was characterized to measure the stormwater runoff discharge rates and pollutant concentrations. The observed averaged event mean concentrations (EMCs) of combined sewer overflows (CSO) were 536.1mg TSS/L, 467.7 mg TCODcr/L, 142.7 mg TBOD/L, 16.5mg TN/L, and 13.5mg TP/L. A detention basin was proposed to reduce CSO, and its essential design elements were discussed. The first flush significantly affected contaminant constituents in the descending order of suspended solid>organics>nutrients. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on the total suspended solid loading. In this study, detention of the first flush equivalent to 5mm of precipitation could reduce CSO-induced diffuse pollution loading to a receiving water body by up to 80% of the total suspended solid loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号