首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Topographic maps are commonly used to define populations of lakes in regional surveys of surface water quality. To illustrate the effect of different maps on that process, we compared the lakes represented on the 1:250,000-scale maps used for the Northeast Region of the Eastern Lake Survey—Phase I (ELS-I) to the lakes on a sample of large-scale maps (1:24,000 or 1:62,500). Lake areas at or near the lower limit of representation delimited “smallest-lake” values for the compared 1:250,000-scale maps. The regional median for these values was 4.5 hectares (ha) and ranged from 0.6 to 24.8 ha. Lake representation is influenced by cartographic limitations such as map scale, age, and complexity as well as the inherent variability of waterbodies (e.g., water level fluctuations or the creation of reservoirs, beaver impoundments, and oxbows). The total number of lakes on large-scale maps increased markedly as lake area decreased. Approximately 15,700 of the estimated 29,000 lakes in the EPA's Northeast Region were 1 to 4 ha in area. Because maps affect the size distribution of lakes included in a regional survey and because lake areas are thought to modify lake chemistry, maps ultimately affect the estimates of regional surface water quality.  相似文献   

2.
ABSTRACT: We surveyed over 2000 lakes in the State of Massachusetts (1983–1984) to examine the spatial variations in their acid-base chemistry. Our survey differed from previous surveys by including small lakes and nonpristine urban lakes. For samples collected in October 1983 and 1984, the median acid neutralizing capacity (ANC) was 184 μeq L?1 and 5.9 percent were acidic (ANC≤O). Small lakes (<4 ha) were more likely to be acidic than large lakes. Generally, sulfate was the dominant acidifying agent, although organic anions were dominant in some of the lakes in the Cape Cod Region. The ionic composition of the lakes showed strong regional patterns which appear to be related to geology and human population density. An analysis of variance of ANC shows the six regional categories in the state explain 51 percent of the variance, while a combined general linear model of lake drainage type, color, elevation, size, silica, and hydrogen ion deposition could explain only 4.9 percent of the variation in ANC. Calcium rich, high ionic strength lakes were present in the marble bedrock in the west, and relatively dilute lakes dominated by sodium and chloride were found near the coast. Chloride concentrations were also related to population density, suggesting road salt as a likely contributing source.  相似文献   

3.
ABSTRACT: A pilot study, which was conducted in the Southern Blue Ridge geographical province of the Southeastern U.S., demonstrated the feasibility of a probability-based regional synoptic design for the National Stream Survey, which is a project aimed at estimating the number and percentage of streams in various regions of the U.S. that are acidic or at risk from acid deposition. Estimated population distributions for key chemical variables were not appreciably affected by week-to-week variability in stream chemistry during the spring index period chosen for the study. Differences were observed in estimated acid neutralizing capacity (ANC), nitrate, and pH frequency distributions between spring and summer. Observations made at the downstream node did not represent the chemistry of the entire reach for some variables (ANC and nitrate) as indicated by differences in chemical concentrations between upstream and downstream sampling locations. Coefficients of variation in chemical species were low enough to provide a reasonably stable classification of streams based on ANC. Although median ANC, sulfate, and nitrate concentrations were quite low in the region, the probability of finding streams with ph < 6.3 is less than 1.3 percent at the α= 0.05 confidence level.  相似文献   

4.
The stabilities in water and dry storage of two solid-state disinfectants (3-chloro-4, 4-dimethyl-2-oxazolidinone, agent I, and calcium hypochlorite) have been compared under a variety of conditions. Variables in the study included pH, temperature, and water quality. Agent I is considerably more stable in dry storage and in water, especially at pH 4.5 and 7.0, than is calcium hypochlorite. This is true for solutions of the two compounds in sterile, distilled, deionized, demandfree water or in a synthetic water containing heavy organic load. Prior work in these laboratories concerning use of agent I as a disinfectant for lake water in a laboratory-scale treatment plant had suggested that agent I has considerable potential for use as an alternative to cholorine gas for water disinfection. The present work suggests that agent I is of sufficient stability to be of use as a solid-state disinfectant for swimming pools and for potable water for remote areas.  相似文献   

5.
6.
ABSTRACT: Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3??, and SO42?. Volume-weighted precipitation H+, NH4+, NO3??, and SO42? concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3?? and SO42? concentrations, but the highest stream water NO3?and SO42? concentrations. Among sites, the ratio of mean monthly upstream NO3?? concentration to precipitation NO3?- concentration declined (p < 0.001, R2= 0.47) as precipitation NO3?? concentration increased. The ratio of mean monthly upstream to precipitation SO42? concentration showed no significant relationship to change in precipitation SO42? concentration. Watersheds showed strong retention of inorganic N (> 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha?1 y?1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号