首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

2.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

3.
Stomatal behavior, growth performance and the accumulation of polynuclear aromatic hydrocarbons (PAHs) were evaluated in seedlings of the mangrove Avicennia marina (Forssk.) Vierh., treated with a water-soluble fraction (WSF) of Abu-Dhabi light Arabian crude oil through foliar spraying or soil application.Irregular stomatal behavior and weak stomatal control over transpiration were observed during the first 24 hours, where stomatal resistances of plants sprayed with 150 and 300 g PAHs plant–1 were significantly lower than that of the control plants. After six weeks, all treated plants showed no significant difference in their relative growth rate (RGR) or in the net assimilation rate (NAR) compared with the control plants.Tri-aromatic hydrocarbons were the most accumulated in tissues of the treated plants. Penta- and hexa-aromatics, on the other hand, were undetectable in the WSF and consequently in the treated plants. A linear relationship was observed between the dose applied to plants and the amounts of tissue accumulated PAHs (r 2=0.515 for soil application and r 2=0.984 for foliar spray). In plants sprayed with 300 g PAHs plant–1, the total PAHs accumulated were more than that accumulated in plants treated through soil application.These findings suggest that: aqueous extraction of crude oil tends to signify the percentage of the low molecular weight PAHs, e.g. naphthalene, to the total PAHs; disturbed stomatal behavior in the first day of the treatment may be due to the venting of the volatile low molecular weight aromatic hydrocarbons (e.g. benzene, toluene, and xylenes) through the stomata; and uptake of water-soluble hydrocarbons by plants is equally possible through both of the root system and the foliage. The ecological implications of these finding are discussed in relation to oil pollution of mangrove stands under field conditions.  相似文献   

4.
ABSTRACT: Long term effects of precipitation and land use/land cover on basin outflow and nonpoint source (NFS) pollutant flux are presented for up to 24 years for a rapidly developing headwater basin and three adjacent headwater basins on the urban fringe of Washington, D.C. Regression models are developed to describe the annual and seasonal responses of basin outflow and IMPS pollutant flux to precipitation, mean impervious surface (IS), and land use. To quantify annual change in mean IS, a variable called delta IS is created as a temporal indicator of urban soil disturbance. Hydrologic models indicate that total annual surface outflow is significantly associated with precipitation and mean IS (r2= 0.65). Seasonal hydrologic models reveal that basin outflow is positively associated with IS during the summer and fall growing season (June to November). NPS pollutant flux models indicate that total and storm total suspended solids (TSS) flux are significantly associated with precipitation and urban soil disturbance in all seasons. Annual NPS total nitrogen flux is significantly associated with both urban and agricultural soil disturbance (r2= 0.51). Seasonal models of phosphorus flux indicate a significant association of total phosphorus flux with urban soil disturbance during the growing season. Total soluble phosphorus (TSP) flux is significantly associated with IS (r2= 0.34) and urban and agricultural soil disturbance (r2= 0.58). In urbanizing Cub Run basin, annual TSP concentrations are significantly associated with IS and cultivated agriculture (r2= 0.51).  相似文献   

5.
Bougeard, Morgane, Jean‐Claude Le Saux, Nicolas Pérenne, Claire Baffaut, Marc Robin, and Monique Pommepuy, 2011. Modeling of Escherichia coli Fluxes on a Catchment and the Impact on Coastal Water and Shellfish Quality. Journal of the American Water Resources Association (JAWRA) 1‐17. DOI: 10.1111/j.1752‐1688.2011.00520.x Abstract: The simulation of the impact of Escherichia coli loads from watersheds is of great interest for assessing estuarine water quality, especially in areas with shellfish aquaculture or bathing activities. For this purpose, this study investigates a model association based on the Soil and Water Assessment Tool (SWAT) coupled with a hydrodynamic model (MARS 2D; IFREMER). Application was performed on the catchment and estuary of Daoulas area (France). The daily E. coli fluxes simulated by SWAT are taken as an input in the MARS 2D model to calculate E. coli concentrations in estuarine water and shellfish. Model validation is based on comparison of frequencies: a strong relationship was found between calculated and measured E. coli concentrations for river quality (r2 = 0.99) and shellfish quality (r2 = 0.89). The important influence of agricultural practices and rainfall events on the rapid and large fluctuations in E. coli fluxes from the watershed (reaching three orders of magnitude in <24 hours) is one main result of the study. Response time in terms of seawater quality degradation ranges from one to two days after any important rainfall event (greater than 10 mm/day) and the time for estuary to recover good water quality also mainly depends on the duration of the rainfall. In the estuary, three effects (rainfall, tidal dilution, and manure spreading) have been identified as important influences.  相似文献   

6.
Summary Seasonal rainerosivity is important in the structure and dynamics of Mediterranean ecosystems. The present paper contributes to the quantitative assessment of RUSLE's monthly erosion index in a data-scarce Mediterranean region. Therefore, a regionalized relationship for estimating monthly erosion index (EI30-month) from only three rainfall parameters has been obtained. Knowledge of the seasonal and annual distribution of erosivity index, permit soil and water conservationists to make improved designs for erosion control, water harvesting or small hydraulic structures. Although a few long data sets were used in the analysis, validation with established monthly erosivity index values from other Italian locations, suggest that the model presented (r2 = 0.973) is robust. It is recommended to monthly erosivity estimates when experimental data-scarce rainfall become available.  相似文献   

7.
Abstract: Mapping stream channels and their geomorphic attributes is an important step in many watershed research and management projects. Often insufficient field data exist to map hydromorphologic attributes across entire drainage basins, necessitating the application of hydrologic modeling tools to digital elevation models (DEMs) via a geographic information system (GIS). In this article, we demonstrate methods for deriving synthetic stream networks via GIS across large and diverse basins using drainage‐enforced DEMs, along with techniques for estimating channel widths and gradient on the reach scale. The two‐step drainage enforcement method we used produced synthetic stream networks that displayed a high degree of positional accuracy relative to the input streams. The accuracies of our estimated channel parameters were assessed with field data, and predictions of bankfull width, wetted width and gradient were strongly correlated with measured values (r2 = 0.92, r2 = 0.95, r2 = 0.88, respectively). Classification accuracies of binned channel attributes were also high. Our methodology allows for the relatively rapid mapping of stream channels and associated morphological attributes across large geographic areas. Although initially developed to provide salmon recovery planners with important salmon habitat information, we suggest these methodologies are relevant to a variety of research and management questions.  相似文献   

8.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

9.
The Bank Assessment of Nonpoint source Consequences of Sediment (BANCS) framework allows river scientists to predict annual sediment yield from eroding streambanks within a hydrophysiographic region. BANCS involves field data collection and the calibration of an empirical model incorporating a bank erodibility hazard index (BEHI) and near‐bank shear stress (NBS) estimate. Here we evaluate the applicability of BANCS to the northern Gulf of Mexico coastal plain, a region that has not been previously studied in this context. Erosion rates averaged over two years expressed the highest variability of any existing BANCS study. As a result, four standard BANCS models did not yield statistically significant correlations to measured erosion rates. Modifications to two widely used NBS estimates improved their correlations (r2 = 0.31 and r2 = 0.33), but further grouping of the data by BEHI weakened these correlations. The high variability in measured erosion rates is partly due to the regional hydrologic and climatic characteristics of the Gulf coastal plains, which include large, infrequent precipitation events. Other sources of variability include variations in bank vegetation and the complex hydro‐ and morphodynamics of meandering, sand bed channels. We discuss directions for future research in developing a streambank erosion model for this and similar regions.  相似文献   

10.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

11.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

12.
Geospatial analysis and statistical analysis are coupled in this study to determine the dynamic linkage between landscape characteristics and water quality for the years 1996, 2002, and 2007 in a subtropical coastal watershed of Southeast China. The landscape characteristics include Percent of Built (%BL), Percent of Agriculture, Percent of Natural, Patch Density and Shannon’s Diversity Index (SHDI), with water quality expressed in terms of CODMn and NH4 +–N. The %BL was consistently positively correlated with NH4 +–N and CODMn at time three points. SHDI is significantly positively correlated with CODMn in 2002. The relationship between NH4 +–N, CODMn and landscape variables in the wet precipitation year 2007 is stronger, with R2 = 0.892, than that in the dry precipitation years 1996 and 2002, which had R2 values of 0.712 and 0.455, respectively. Two empirical regression models constructed in this study proved more suitable for predicting CODMn than for predicting NH4 +–N concentration in the unmonitored watersheds that do not have wastewater treatment plants. The calibrated regression equations have a better predictive ability over space within the wet precipitation year of 2007 than over time during the dry precipitation years from 1996 to 2002. Results show clearly that climatic variability influences the linkage of water quality-landscape characteristics and the fit of empirical regression models.  相似文献   

13.
ABSTRACT: Nonpoint source ground water contamination by nitrate nitrogen (NO3-N) leached from agricultural lands can be substantial and increase health risks to humans and animals. Accurate and rapid methods are needed to identify and map localities that have a high potential for contamination of shallow aquifers with NO3-N leached from agriculture. Evaluation of Nitrate Leaching and Economic Analysis Package (NLEAP) indices and input variables across an irrigated agricultural area on an alluvial aquifer in Colorado indicated that all leaching indices tested were more strongly correlated with aquifer NO3-N concentration than with aquifer N mass. Of the indices and variables tested, the NO3-N Leached (NL) index was the NLEAP index most strongly associated with groundwater NO3-N concentration (r2 values from 0.37 to 0.39). NO3-N concentration of the leachate was less well correlated with ground water NO3-N concentration (r2 values from 0.21 to 0.22). Stepwise regression analysis indicated that, although inorganic and organic/inorganic fertilizer scenarios had similar r2 values, the Feedlot Indicator (proximity) variable was significant over and above the NO3-N Leached index for the inorganic scenario. The analysis also showed that combination of either Movement Risk Index (MIRI) or NO3-N concentration of the leachate with the NO3-N Leached index leads to an improved regression, which provides insight into area-wide associations between agricultural activities and ground water NO3-N concentration.  相似文献   

14.
Total suspended solids (TSS) and total phosphorus (TP) have been shown to be strongly correlated with turbidity in watersheds. High‐frequency in situ turbidity can provide estimates of these potential pollutants over a wide range of hydrologic conditions. Concentrations and loads were estimated in four western Lake Superior trout streams from 2005 to 2010 using regression models relating continuous turbidity data to grab sample measures of TSS and TP during differing flow regimes. TSS loads estimated using the turbidity surrogate were compared with those made using FLUX software, a standard assessment technique based on discharge and grab sampling for TSS. More traditional rating curve methodology was not suitable because of the high variability in the particulates vs. discharge relationship. Stream‐specific turbidity and TSS data were strongly correlated (r2 = 0.5 to 0.8; p < 0.05) and less so for TP (r2 = 0.3 to 0.7; p < 0.05). Near‐continuous turbidity monitoring (every 15 min) provided a good method for estimating both TSS and TP concentration, providing information when manual sample collection was unlikely, and allowing for detailed analyses of short‐term responses of flashy Lake Superior tributaries to highly variable weather and hydrologic conditions while the FLUX model typically resulted in load estimates greater than those determined using the turbidity surrogate, with 17/23 stream years having greater FLUX estimates for TSS and 18/23 for TP.  相似文献   

15.
Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.  相似文献   

16.
In this study, two different versions of the Soil and Water Assessment Tool (SWAT) model were used to simulate the hydrology and biogeochemical response of the Cannonsville Reservoir watershed, in New York. The first version distributes overland flow in ways that are consistent with variable source area (VSA) hydrology driven by saturation excess runoff, whereas the second version is the standard version of SWAT. These two models were each calibrated for streamflow (Flow), particulate phosphorus (PP), total dissolved phosphorus (TDP), and sediment (Sed) against measured data from the 1,200 km2 Cannonsville watershed. The standard version of the model yielded an r2 between the measured and simulated data of 0.85, 0.73, 0.70, and 0.72 for Flow, Sed, TDP, and PP, respectively. The VSA version yielded an r2 of 0.84, 0.69, 0.72, and 0.53 for Flow, Sed, TDP, and PP, respectively. The two models were then used to determine the maximum upper bound on the reduction in phosphorus loading by removing all of the corn in the watershed. The average reductions between the two models were 65 and 37% for PP and TDP, respectively. The VSA version was also used to estimate the effect of moving corn land in the watershed from the wettest, most runoff prone areas to the driest, least runoff prone areas, which cannot be done directly with the standard SWAT model.  相似文献   

17.
Estimation of stream channel heads is an important task since ephemeral channels play a significant role in the transport of sediment and materials to perennial streams. The slope‐area method utilizes digital elevation model (DEM) and related information to develop slope‐area threshold relationships used to estimate the position of channel heads in the watershed. A total of 162 stream channel heads were mapped across the three physiographic regions of Alabama, including the Southwestern Appalachians (51), Piedmont/Ridge and Valley (61), and Coastal Plains (51). Using Geographic Information System and DEM, the local slope and drainage area for each mapped channel head was calculated and region‐specific models were developed and evaluated. Results demonstrated the local slope and drainage area had an inverse and strong correlation in the Piedmont/Ridge and Valley region (r2 = 0.71) and the Southwestern Appalachian region (r2 = 0.61). Among three physiographic regions, the weakest correlation was observed in the Coastal Plain region (r2 = 0.45). By comparing the locations of modeled channel heads to those located in the field, calculated reliability and sensitivity indices indicated model accuracy and reliance were weak to moderate. However, the slope‐area method helped define the upstream boundaries of a more detailed channel network than that derived from the 1:24,000‐scale National Hydrography Dataset, which is commonly used for planning and regulatory purposes.  相似文献   

18.
ABSTRACT: Recent stream survey data (1989–1993) from 31 stream segments of 21 streams within the upper South Umpqua Watershed Oregon were compared to 1937 stream survey data collected from these same stream segments. Current low-flow wetted stream widths of 22 of the 31 surveyed stream segments were significantly different than in 1937; 19 stream segments were significantly wider while the remaining three stream segments were significantly narrower. In only 1 of 8 tributaries to the South Umpqua River which had headwaters within land designated wilderness area did low-flow stream channel width increase since 1937. Conversely, 13 of the 14 tributaries to the South Umpqua River which originated from lands designated as timber emphasis were significantly wider than in 1937. The observed change in stream width was linearly related to timber harvest (r2= 0.44), road density (r2= 0.45), and the amount of large organic debris remaining within the active stream channel (r2= 0.43). These findings suggest that timber harvest and road construction may have resulted in changes in channel characteristics. These channel changes may also be a factor in the observed decline of three of the four populations of anadromous salmonids within the basin.  相似文献   

19.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   

20.
ABSTRACT: Genetic Programming (GP) is a domain‐independent evolutionary programming technique that evolves computer programs to solve, or approximately solve, problems. To verify GP's capability, a simple example with known relation in the area of symbolic regression, is considered first. GP is then utilized as a flow forecasting tool. A catchment in Singapore with a drainage area of about 6 km2 is considered in this study. Six storms of different intensities and durations are used to train GP and then verify the trained GP. Analysis of the GP induced rainfall and runoff relationship shows that the cause and effect relationship between rainfall and runoff is consistent with the hydrologic process. The result shows that the runoff prediction accuracy of symbolic regression based models, measured in terms of root mean square error and correlation coefficient, is reasonably high. Thus, GP induced rainfall runoff relationships can be a viable alternative to traditional rainfall runoff models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号