首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.  相似文献   

2.
In areas where there is little or no topographic relief and where soils, vegetation, geologic structure and other factors are essentially uniform, identification of drainage basin boundaries is difficult or impossible. In such a homogeneous landscape, however, assumptions may be made that the hydrologic and geomorphic controls over drainage basin development are constant within the area. If this is true, it is suggested, the drainage area of a stream is related solely to the stream length and factors governing the length-area relationship are also constant. A simple formula based on these assumptions and the gravity model is proposed which can be used to estimate drainage divides in a homogeneous landscape.  相似文献   

3.
This paper describes the results of a study of hydrologic factors affecting floods from humid region in northeastern Ohio. Statistical multiple correlation analysis was used to relate floods to hydrologic and basin characteristics. Results of the study emphasize that the characteristics of floods from small and large watersheds are so significantly different that the two problems cannot be combined into one solution. The studies show that the most important hydrologic characteristics in large watersheds were: drainage area size and main channel slope. For small watersheds the most important hydrologic characteristics were: drainage area size, rainfall intensity and soil index. For watershed effect by reservoir storage it was found that: (1) small drainage areas are relatively more affected by storage than large drainage areas; (2) storage of less than 25 acre feet per square mile will not have significant effect on the mean annual flood (for drainage area above 70 square miles).  相似文献   

4.
ABSTRACT: This paper discusses a computer program which extracts a number of watershed and drainage network properties directly from digital elevation models (DEM) to assist in the rapid parameterization of hydrologic runoff models. The program integrates new and established algorithms to address problems inherent in the analysis low-relief terrain from raster DEMs similar to those distributed by the U.S. Geological Survey for 7.5-minute quadrangles. The program delineates the drainage network from a DEM, and determines the Strahler order, total and direct drainage area, length, slope, and upstream and downstream coordinates of each channel link. It also identifies the subwatershed of each channel source and of the left and right bank of each channel link, and assigns a unique number to each network node. The node numbers are used to associate each subwatershed with the channel link to which it drains, and can be used to control flow routing in cascade hydrologic models. Program output includes tabular data and raster maps of the drainage network and subwatersheds. The raster maps are intended for import to a Geographical Information System where they can be registered to other data layers and used as templates to extract additional network and subwatershed information.  相似文献   

5.
ABSTRACT: Periodic surveys of the upper Mississippi River since 1866 and a discharge record of nearly equal length provided an opportunity to learn more about the magnitudes and rates of geomorphic processes at work in large stream systems. Furthermore, geomorphic and hydrologic adjustments could be evaluated in relation to watershed land use changes, small‐scale climate fluctuations, and considerable modifications to the channel and floodplain during the period of record. The present study uses GIS mapping to quantitatively compare historical changes in mapped land and water phenomena in the upper Mississippi River Pool 10, located along southwest Wisconsin's border. Modest channel widening and decreases in island area throughout the study reach during the last century are detectable. Flood magnitudes and frequencies also have varied during this time, and stages and low flow discharges have increased since the 1940s. The latter hydrologic change appears to be closely associated with the reach's geomorphic adjustments. Results are representative of a valley reach where a major tributary contributes a large sand bedload, forming an alluvial fan of considerable size in the floodplain.  相似文献   

6.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

7.
ABSTRACT: A computerized geographic information system (GIS) was created in support of data requirements by a hydrologic model designed to predict the runoff hydrograph from ungaged basins. Some geomorphologic characteristics (i.e., channel lengths) were manually measured from topographic maps, while other parameters such as drainage area and number of channels of a specified order, land use, and soil type were digitized and manipulated through use of the GIS. The model required the generation of an integrated Soil Conservation Service (SCS) curve number for the entire basin. To this end, soil associations and land use (generated from analysis of Landsat satellite data) were merged in the GIS to acquire a map representing SCS runoff curve numbers. The volume of runoff obtained from the Watershed Hydrology Simulation (WAHS) Model using this map was compared to the volume computed by hydrograph separation and found to be accurate within 19 percent error. To quantify the effect of changing land use on basin hydrology, the GIS was used to vary percentages from the drainage area from forest to bare soil. By changing the basin runoff curve numbers, significant changes in peak discharge were noted; however, the time to peak discharge remained essentially independent of change in area of land use. The GIS capability eliminated many of the more traditional manual phases of data input arid manipulation, thereby allowing researchers to concentrate on the development and calibration of the model and the interpretation of presumably more accurate results.  相似文献   

8.
The Pacific Northwest encompasses a range of hydrologic regimes that can be broadly characterized as either coastal (where rain and rain on snow are dominant) or interior (where snowmelt is dominant). Forest harvesting generally increases the fraction of precipitation that is available to become streamflow, increases rates of snowmelt, and modifies the runoff pathways by which water flows to the stream channel. Harvesting may potentially decrease the magnitude of hyporheic exchange flow through increases in fine sediment and clogging of bed materials and through changes in channel morphology, although the ecological consequences of these changes are unclear. In small headwater catchments, forest harvesting generally increases annual runoff and peak flows and reduces the severity of low flows, but exceptions have been observed for each effect. Low flows appear to be more sensitive to transpiration from vegetation in the riparian zone than in the rest of the catchment. Although it appears that harvesting increased only the more frequent, geomorphically benign peak flows in several studies, in others the treatment effect increased with return period. Recovery to pre‐harvest conditions appeared to occur within about 10 to 20 years in some coastal catchments but may take many decades in mountainous, snow dominated catchments.  相似文献   

9.
Low Impact Development (LID) is alternative design approach to land development that conserves and utilizes natural resources to minimize the potential negative environmental impacts of development, such as flooding. The Woodlands near Houston, Texas is one of the premier master‐planned communities in the United States. Unlike in a typical urban development where riparian corridors are often replaced with concrete channels, pervious surfaces, vegetation, and natural drainage pathways were preserved as much as possible during development. In addition, a number of detention ponds were strategically located to manage runoff on site. This article uses a unique distributed hydrologic model, Vflo?, combined with historical (1974) and recent (2008 and 2009) rainfall events to evaluate the long‐term effectiveness of The Woodlands natural drainage design as a stormwater management technique. This study analyzed the influence of LID in The Woodlands by comparing the hydrologic response of the watershed under undeveloped, developed, and highly urbanized conditions. The results show that The Woodlands drainage design successfully reflects predeveloped hydrologic conditions and produces peak flows two to three times lower than highly urbanized development. Furthermore, results indicate that the LID practices employed in The Woodlands successfully attenuate the peak flow from a 100‐year design event, resulting in flows comparable to undeveloped hydrologic conditions.  相似文献   

10.
In New England, patterns of glacial deposition strongly influence wetland occurrence and function. Many wetlands are associated with permeable deposits and owe their existence to groundwater discharge. Whether developed on deposits of high or low permeability, wetlands are often associated with streams and appear to play an important role in controlling and modifying streamflow. Evidence is cited showing that some wetlands operate to lessen flood peaks, and may have the seasonal effect of increasing spring discharges and depressing low flows. Wetlands overlying permeable deposits may be associated with important aquifers where they can produce slight modifications in water quality and head distribution within the aquifer. Impacts to wetlands undoubtedly will affect these functions, but the precise nature of the effect is difficult to predict. This is especially true of incremental impacts to wetlands, which may, for example, produce a change in streamflow disproportionate to wetland area in the drainage basin, i.e., a nonlinear effect as defined by Preston and Bedford (1988). Additional research is needed before hydrologic function can be reliably correlated with physical properties of wetlands and landscapes.A model is proposed to structure future research and explore relationships between hydrologic function and physical properties of wetlands and landscapes. The model considers (1) the nature of the underlying deposits (geologic type), (2) location in the drainage basin (topographic position), (3) relationship to the principal zone of saturation (hydrologic position), and (4) hydrologic character of the organic deposit.  相似文献   

11.
ABSTRACT: The objective of this work is to determine the effects of extension of a stream network through land drainage activities during the late 1800s on the hydrologic response of a watershed. The Mackinaw River Basin in Central Illinois was chosen as the focus and the pre‐land and post‐land drainage activity hydrologic responses were obtained through convolution of the hill slope and channel responses and compared. The hill slope response was computed using the kinematic wave model and the channel response was determined using the geomorphologic instantaneous unit hydrograph method. Our hypothesis was that the hydrologic response of the basin would exhibit the characteristic effects of settlement (i.e., increases in peak discharges and decreases in times to peak). This, indeed, is what occurred; however, the increase in peak discharges diminishes as scale increases, leaving only the decrease in times to peak. At larger scales, the dispersive effects of the longer hill slope lengths in the pre‐settlement scenario seem to balance the depressive effects of the longer path lengths in the post‐settlement scenario, thus the pre‐settlement and post‐settlement peak discharges are approximately equivalent. At small scales, the dispersion caused by the hill slope is larger in the pre‐settlement case; thus, the post‐settlement peak discharges are greater than the pre‐settlement.  相似文献   

12.
ABSTRACT: A detailed but simple hydrologic budget for the entire Rattlesnake Creek basin (3,768 km2) in south-central Kansas was developed. With this budget, using minimal daily-weather input data and the soil-plant-water system-analysis methodology, we were able to characterize the spatial distribution of the hydrologic components of the water balance within the basin. A combination of classification and meteorological methods resulted in a basinwide integration methodology. Using this methodology, we found that, in addition to obvious climatic controls, soil, vegetation, and land-use factors also exert considerable influence on the water balance of the area. The available-water capacity (AWC) of soil profiles plays a dominant role in soil-water-deficit development and deep drainage. Vegetation and dryland or irrigated farming particularly affect the evapotranspiration (ET) components, with ET from irrigated corn and alfalfa being two to three times that from wheat. Deep drainage from irrigated wheat fields was found to be significantly higher than that from grassland and dryland wheat; deep drainage from alfalfa is practically nonexistent. We demonstrated how vegetation changes may affect components of the hydrologic cycle. We also showed that different portions of the watershed have different water-balance components and that use of single average values of hydrologic variables in management practices may not be realistic.  相似文献   

13.
ABSTRACT: Based on field surveys and analysis of road networks using a geographic information system (GIS), we assessed the hydrologic integration of an extensive logging-road network with the stream network in two adjacent 62 and 119 km2 basins in the western Cascades of Oregon. Detailed surveys of road drainage for 20 percent of the 350 km road network revealed two hydrologic flow paths that link roads to stream channels: roadside ditches draining to streams (35 percent of the 436 culverts examined), and roadside ditches draining to culverts with gullies incised below their outlets (23 percent of culverts). Gully incision is significantly more likely below culverts on steep (< 40 percent) slopes with longer than average contributing ditch length. Fifty-seven percent of the surveyed road length is connected to the stream network by these surface flowpaths, increasing drainage density by 21 to 50 percent, depending on which road segments are assumed to be connected to streams. We propose a conceptual model to describe the hydrologic function of roads based on two effects: (1) a volumetric effect, increasing the volume of water available for quickflow and (2) a timing effect, altering flow-routing efficiency through extensions to the drainage network. This study examines the second of these two effects. Future work must quantify discharge along road segments connected to the stream network in order to more fully explain road impacts on basin hydrology.  相似文献   

14.
ABSTRACT: Regional hydrologic procedures such as generalized least squares regression and streamflow record augmentation have been advocated for obtaining estimates of both flood-flow and low-flow statistics at ungaged sites. While such procedures are extremely useful in regional flood-flow studies, no evaluation of their merit in regional low-flow estimation has been made using actual streamflow data. This study develops generalized regional regression equations for estimating the d-day, T-year low-flow discharge, Qd, t, at ungaged sites in Massachusetts where d = 3, 7, 14, and 30 days. A two-parameter lognormal distribution is fit to sequences of annual minimum d-day low-flows and the estimated parameters of the lognormal distribution are then related to two drainage basin characteristics: drainage area and relief. The resulting models are general, simple to use, and about as precise as most previous models that only provide estimates of a single statistic such as Q7,10. Comparisons are provided of the impact of using ordinary least squares regression, generalized least squares regression, and streamflow record augmentation procedures to fit regional low-flow frequency models in Massachusetts.  相似文献   

15.
ABSTRACT: Extensive investigations have been undertaken to determine the utility of Landsat data for detecting and analyzing hydrologic characteristics of an interior watershed of Iran that drains to Daryachehye-Namak (salt lake). This interior playa serves as the terminus for surface water discharging to it from the Karaj, Shur, Saveh, and Ghom Rivers and ground water from their underlying aquifers. These drainage systems encompass heavily populated and industrial sectors of west central Iran, including Tehran. The result of this investigation demonstrates the applicability of Landsat data for mapping and monitoring water regimen as an aid in interpreting hydrologic conditions throughout this arid region. Fluctuation of water area in a playa lake, occupying the lowest part of this closed basin, was monitored on repetitive Landsat coverage. As the result of field investigations combined with optical and digital analyses of the Landsat data, fluctuating water depths were determined in order to estimate the volume of water present in this lake during various seasons. A comparison between stream discharge rates and the estimated volume of standing water make it possible to quantitatively evaluate the hydrologic regimen and to detect the significance of ground water discharge.  相似文献   

16.
Abstract: Regional curves, which relate bankfull channel dimensions and discharge to watershed drainage area, are developed to aid in identifying the bankfull stage in ungaged watersheds, and estimating the bankfull discharge and dimensions for river studies and natural channel design applications. This study assessed 26 stable stream reaches in two hydro‐physiographic regions of the Florida Coastal Plain: the Northwest Florida Coastal Plain (NWFCP) and the North Florida Coastal Plain (NFCP). Data from stream reaches in Georgia and Alabama were also used to develop the Florida regional curves, since they are located in the same hydro‐physiographic region. Reaches were selected based on the presence of U.S. Geological Survey gage stations and indicators of limited watershed development (e.g., <10% impervious surface). Analyses were conducted to determine bankfull channel dimensions, bankfull discharge, average channel slope, and Rosgen stream classification. Based on these data, significant relationships were found between bankfull cross‐sectional area, width, mean depth, and discharge as a function of drainage area for both regions. Data from this study suggested that bankfull discharges and channel dimensions were larger from NWFCP streams than from Coastal Plain streams in North Carolina and Maryland. Bankfull discharges were similar between NFCP and Georgia coastal plain streams; therefore, the data were combined into one regional curve. In addition, the data were stratified by Rosgen stream type. This stratification strengthened the relationships of bankfull width and mean depth as a function of drainage area.  相似文献   

17.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

18.
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases.  相似文献   

19.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

20.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号