首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
采用序批式活性污泥法(SBR)工艺,通过向SBR反应器内投加不同浓度的壬基酚(NP),探讨其对脱氮系统的影响.结果表明,当NP质量浓度为10 mg/L时,对氨氮的去除产生抑制,但并不明显,氨氮去除率仍可达约90%,在反硝化过程中,SBR反应器内会累积大量的NO2--N,对总氮的去除产生较大影响,总氮去除率只有50%,NO3--N的生成量不稳定;随着NP浓度的增加,对氨氮的去除产生抑制作用更为明显,当NP质量浓度达到80 mg/L时,氨氮去除率只有约60%,总氮去除率达到最低,只有23%.  相似文献   

2.
针对富氧水中硝酸盐氮(NO-3-N),采用零价铁(ZVI)和甲醇支持的生物-化学联合法开展了批实验研究,探讨了ZVI类型、CH3OH∶N比、初始溶解氧(DO)浓度、初始NO-3-N浓度和水温等5个因素对联合法除氧脱氮效果的影响。结果表明,ZVI的除氧能力由高至低依次为:ZVI-C(0.124 d)>ZVI-A(0.141 d)>ZVI-B(0.179 d)。ZVI支持的联合法NO-3-N去除率由高至低依次为:ZVI-A(99.6%)>ZVI-C(95.3%)>ZVI-B(92.2%)。CH3OH∶N≤3.5∶1时,联合法去除<52.0%的NO-3-N;CH3OH∶N=10∶1时,去除100%的NO-3-N;CH3OH∶N=200∶1时,去除70.2%的NO-3-N。当初始DO浓度介于3.6~5.3 mg/L之间时,联合法的NO-3-N去除率介于98.8%~99.6%之间。在任意时刻,低底物浓度(5.2 mg/L)时的NO-3-N去除率低于高浓度(21.1 mg/L)时的去除率;低底物浓度下完全脱氮所需时间比高浓度下长2 d。15.0℃时联合法需要7 d可以达到完全脱氮,然而在27.5℃时则需要5 d。低温时亚硝酸盐氮浓度最大值(4.4 mg/L)显著高于高温时的最大值(1.1 mg/L)。ZVI类型、CH3OH∶N、初始NO-3-N浓度和水温显著影响联合法的脱氮效果,而初始DO浓度对联合法的影响不大。  相似文献   

3.
琼脂碳源生物反硝化去除水源水中硝酸盐   总被引:1,自引:1,他引:0  
针对受硝酸盐污染的水源水,以琼脂为反硝化细菌的碳源和微生物载体,通过生物反硝化作用脱除水源水中的硝酸盐,并利用曝气生物滤池(BAF)去除琼脂反应器出水中残留的少量CODMn和NO2--N等污染物。实验结果表明,水源水自然接种的条件下,可以顺利启动琼脂反应器;在温度为25℃左右,琼脂反应器在进水NO3--N约25 mg/L、水力停留时间1.5 h时,能获得70%的硝酸盐氮去除率;曝气生物滤池在水力停留时间0.5 h、气水比2.8时,可控制最终出水的CODMn和NO2--N分别在5.0 mg/L和0.10 mg/L以下;琼脂反应器的脱氮效果与温度、进水NO3--N浓度及水力停留时间等有关。研究指出,琼脂反应器与曝气生物滤池构成的组合系统能较好地脱除水源水中的硝酸盐并且能控制最终出水水质,不会导致二次污染,从而获得合格的饮用水源水。  相似文献   

4.
反硝化生物滤池深度脱氮机理   总被引:3,自引:0,他引:3  
研究了反硝化生物滤池对污水中硝酸盐氮的脱氮机制及其影响因素。结果表明,在实验室小试条件下,反硝化生物滤池启动14 d后出水基本达到稳定,NO3--N和TN的去除率分别为80%~88%和76%~80%,COD的去除率达到80%以上。稳定运行期,在室温20~29℃、水力负荷为1.5~2 m3/(m2.h)、COD/TN为3.7~4.5的条件下,反应器对NO3--N和TN的去除率分别为70%~85%和47%~64%,且在运行过程中出现了少量NO2--N的积累。分析反硝化生物滤池沿水流方向有机物浓度及氮形态分布发现,沿水流方向NH4+-N浓度基本保持不变;NO2--N浓度在滤层底部至40 cm高处积累较为明显,其后浓度基本不变。  相似文献   

5.
从处理高盐废水的生物接触氧化工艺成熟活性污泥中分离得到一株耐盐好氧反硝化细菌F10.根据形态学特征、生理生化以及16S rRNA基因序列测定分析,初步判定该菌株为盐单胞菌属(Halomonas sp.).菌株能在盐度为3%~7%的培养基中良好的生长及脱氮,最适盐度为3%(以Na Cl计),最适碳源为乙酸钠,最适p H为7~8,最适温度为30℃.该菌株能利用NO-3-N进行反硝化作用,在盐度为3%的反硝化培养基中24 h内对NO-3-N的去除率达到92.6%,36 h基本完全去除。该菌株在3%盐度下表现出良好的异养硝化-好氧反硝化性能,初始硝态氮浓度在270 mg/L时,菌株的脱氮率可达90%以上,氨氮的去除率可达75%以上,脱氮过程中无NO-2-N积累,可实现同步硝化反硝化,具有一定的工程应用价值。  相似文献   

6.
CAST工艺常规模式下脱氮性能研究   总被引:1,自引:0,他引:1  
研究了有效容积为21.6 L的循环式活性污泥法反应器在常规模式下,处理模拟废水时,有机污染物和氮污染物的去除情况,并分析了反应器脱氮过程中的限制性因素。结果表明,在反应器的运行周期为4 h(进水曝气2 h,沉淀和排水各1 h)好氧区DO2 mg/L,污泥浓度MLSS稳定在4 000 mg/L时,污泥回流比为20%,COD和氨氮的去除率可达90%。对一个典型周期进行监测分析,氨氮去除彻底,出水主要是硝态氮,总氮去除率约为69%。静态试验测得氨氮氧化速率为8.0 mg NH4+-N/(g MLSS.h),硝态氮生成速率为3.3 mg NO3--N/(g MLSS.h)。从实验结果可以分析出,在上面运行条件下CAST工艺脱氮限制性因素是回流比和污泥龄。  相似文献   

7.
异养硝化细菌Alcaligenes sp.S3除氮特性及动力学   总被引:1,自引:0,他引:1  
从湘江生活污水排污口分离纯化的一株菌Alcaligenes sp.S3,在氨氮浓度为400 mg/L时,经过192 h的降解,氨氮的去除率达到88%,并且NH2OH和NO2--N并没出现积累。在对不同浓度的氨氮进行一级动力学拟合时发现,只有氨氮浓度较高时才很好地符合,浓度为500 mg/L时R2达到0.9923。酸性环境对Alcaligenes sp.S3生长有抑制作用,在pH7.5~10生长较好。摇床转速对Alcaligenes sp.S3除氮影响不大,C/N过低或过高对Alcaligenes sp.S3除氮都有影响。  相似文献   

8.
贫营养生物膜系统脱氮效果及影响因素实验研究   总被引:2,自引:1,他引:1  
为了有效解决饮用水源氮源污染问题,采用贫营养生物菌剂对新型悬浮填料进行人工强化挂膜,在无需外加碳源及模拟原位条件下考察贫营养生物膜系统对微污染原水的脱氮效果及其影响因素。研究表明:在水温为25℃左右,溶解氧浓度为4 mg/L左右,水源水质为NH4+-N0.140 mg/L,NO2--N0.005 mg/L,NO3--N1.096 mg/L,TN1.450 mg/L,CODMn4.810 mg/L的条件下,该系统运行22 d后对原水硝氮及总氮具有较明显的去除效果,去除率范围分别为43%~75%和49%~76%,运行期间氨氮浓度基本保持在0.1 mg/L以下,系统稳定运行时的脱氮效果可满足地表水环境Ⅲ类水体的质量标准要求。另外,通过考察水温、填料填充率、C/N比等因素对贫营养生物膜系统脱氮效果的影响作用,说明在不同时期和不同环境条件下该系统对微污染水体的脱氮效果具有一定差异。  相似文献   

9.
粒状羟基氧化铁对废水中硝酸盐的吸附   总被引:2,自引:0,他引:2  
霍蕾  杨琦  尚海涛 《环境工程学报》2012,6(9):3058-3062
本实验研究了粒状羟基氧化铁(GFH)对人工配制含氮废水中NO3--N吸附的影响因素、吸附等温线和吸附动力学。结果表明,GFH的吸附平衡时间为80 min,增加NO3--N溶液的初始浓度,去除率下降;pH值为5时GFH对NO3--N的吸附能力最强,pH值升高和降低,吸附能力均下降;GFH对NO3--N的吸附能力随着温度的升高略有降低;在25℃下,以Langmuir方程和Freundlich方程分别对GFH吸附NO3--N的等温线进行拟合,拟合效果以Langmuir方程较好,相关性达到0.9930。GFH吸附NO3--N的过程符合拟二级动力学方程,初始时刻的吸附速率h在35℃时最大,为1.653 mg/(g.mg),吸附速率常数随温度的升高而增大;吸附反应的活化能Ea为54.72 kJ/mol。本研究结果表明,GFH在饮用水脱氮和含氮浓度较低的污水再生回用领域有实际应用的潜力。  相似文献   

10.
耐低温贫营养好氧反硝化菌群脱氮特性及安全性   总被引:1,自引:0,他引:1  
针对微污染水体强化原位生物脱氮技术同时面临低温、贫营养及好氧问题,对实验室已分离筛选的贫营养好氧反硝化菌和耐低温好氧反硝化菌进行菌源重组,构建出高效耐低温贫营养好氧脱氮功能菌群T1(Y3+F3+H8)和T2(Y3+F4)。研究不同投菌量条件下菌群的脱氮特性,结果表明,投菌量对T1脱氮效果有一定影响,0.1、0.2和1.0 mg/L投量对NO3--N去除率为71%、91%和100%,总氮去除率为56%、34%和52%;T2菌群,当投量为0.2 mg/L时,对NO3--N、总氮去除率最大可达66%和59.48%。对菌群T1、T2进行生物安全性分析,采用次氯酸钠进行消毒,其生物灭活率均达到99.9%以上。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Abstract

The purpose of this study was to determine radionuclide and trace element concentrations in bottom‐feeding fish (catfish, carp, and suckers) collected from the confluences of some of the major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG) and the potential radiological doses from the ingestion of these fish. Samples of muscle and bone (and viscera in some cases) were analyzed for 3H, 90Sr, 137Cs, totU, 238Pu, 239,240Pu, and 241Am and Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Most radionuclides, with the exception of 90Sr, in the muscle plus bone portions of fish collected from LANL canyons/RG were not significantly (p<0.05) higher from fish collected upstream (San Ildefonso/background) of LANL. Strontium‐90 in fish muscle plus bone tissue significantly (p<0.05) increases in concentration starting from Los Alamos Canyon, the most upstream confluence (fish contained 3.4E‐02 pCi g‐1 [126E‐02 Bq kg‐1]), to Frijoles Canyon, the most downstream confluence (fish contained 14E‐02 pCi g‐1 [518E‐02 Bq kg‐1]). The differences in 90Sr concentrations in fish collected downstream and upstream (background) of LANL, however, were very small. Based on the average concentrations (±2SD) of radionuclides in fish tissue from the four LANL confluences, the committed effective dose equivalent from the ingestion of 46 lb (21 kg) (maximum ingestion rate per person per year) of fish muscle plus bone, after the subtraction of background, was 0.1 ± 0.1 mrem y‐1 (1.0 ± 1.0 μSv y‐1), and was far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem y‐1 (1000 μSv y‐1). Of the trace elements that were found above the limits of detection (Ba, Cu, and Hg) in fish muscle collected from the confluences of canyons that cross LANL and the RG, none were in significantly higher (p<0.05) concentrations than in muscle of fish collected from background locations.  相似文献   

13.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

14.
We reported previously that trichodiene, a volatile trichothecene derivative, was produced by a Stachybotrys isolate, also known to produce highly cytotoxic, non-volatile, macrocyclic trichothecenes (satrotoxins). We investigated the relationship between the production of trichodiene and various non-volatile trichothecenes for several molds. Volatile metabolites were concentrated by adsorption on Tenax TA and analyzed by GC/MS, while non-volatile metabolites were separated by HPLC, derivatized and analyzed by GC/MS. Stachybotrys chartarum isolates producing macrocyclic trichothecenes secreted significantly larger amounts of trichodiene and other sesquiterpenes than isolates which only produced simple trichothecenes. The amounts of secreted trichodiene were relatively small in all cases. With the exception of Memnoniella, which excreted small amounts of sesquiterpenes, the other isolates produced varying amounts of sesquiterpenes, including trichodiene, as well as simple tricothecenes, no detectable trichodiene, but large amounts of griseofulvin derivatives. In Stachybotrys there is apparently a correlation between trichodiene and macrocyclic trichothecene production. In the remaining isolates, there was no simple relationship between trichodiene and non-volatile trichothecene synthesis. Trichodiene is produced in larger amounts by Stachybotrys isolates, which also produce satratoxins, but it will be difficult to utilize this metabolite to detect toxic isolates in buildings due to the relatively small amounts excreted.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

17.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

18.
Abstract

This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p<0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% on LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y‐1 (2.2 μSv y‐1), deer bone = 3.8 mrem y‐1 (38 μSv y‐1), elk muscle = 0.12 mrem y‐1 (1.2 μSv y‐1), and elk bone = 1.7 mrem y‐1 (17 μSv y‐1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y‐1 (1000 μSv y‐1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E‐06, which is far below the Environmental Protection Agency upper level guideline of 1E‐04.  相似文献   

19.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

20.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号