首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
A population of Oikopleura longicauda was sampled daily for 10 days, a period longer than their life cycle, using two nets of different mesh size (53 and 200 m). Analysis of variance revealed that the number of specimens collected by the two nets was not significantly different for individuals larger than 300 m in trunk length. A grand mean regression plotted for log of length versus log of number of specimens indicated that the number of small-sized O. longicauda (<300 m), which are not quantitatively sampled by nets, can be estimated from the collections by use of a coefficient of correction.  相似文献   

2.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

3.
T. Ikeda  A. Imamura 《Marine Biology》1992,113(4):595-601
The population structure and life cycle of the mesopelagic ostracod Conchoecia pseudodiscophora Rudjakov in Toyama Bay, southern Japan Sea, were investigated using a time-series of samples collected during 0 to 500 m vertical hausls with twin-type Norpac nets (0.35 and 0.10 mm mesh) over one full year (1 February 1990 to 30 January 1991). Additional samples were also collected with a single-type closing Norpac net (0.06 mm mesh) to examine the vertical distribution patterns of eggs and all instars of this species. The proportion of gravid females present indicated that reproduction of C. pseudodiscophora continues throughout the year, but peaks in April–July. Eggs and Instars I and II were distributed below 500 m, while the more advanced instars were most abundant in the 350 to 500 m stratum by both day and night. Based on the abundance peaks of each instar in the time-series samples, development times were estimated to be 2.5, 4, 3, 7 and 11 mo for Instars III, IV, V, VI, and VII, respectively. Thus, a total of 30 mo is required for newly spawned eggs to hatch and reach adulthood. Stomach-fullness indexes revealed no seasonality in the feeding activity of any instar stage, but that feeding activity was low in older instars, particularly in adult males. The present results are compared with those for a few other ostracod species, in an attempt to characterize the life cycle of C. pseudodiscophora inhabiting waters of subzero temperature in the mesopelagic zone of the Japan Sea.  相似文献   

4.
 Various developmental stages (early larvae to adults) of Euphausia superba have been collected in different seasons in the Weddell Sea, the Lazarev Sea and off the Antarctic Peninsula to investigate the role of lipids and fatty acids in the life cycle of the Antarctic krill. The total-lipid data for E. superba exhibited seasonal variations, with low lipid levels in late winter/early spring and the highest levels in autumn. Seasonal changes were most pronounced in the immature and adult specimens, increasing from about 10% lipid of dry mass to more than 40%. The fatty-acid compositions of the younger stages were dominated by 20:5(n-3), 22:6(n-3) and 16:0. These are typical phospholipid fatty acids, which are major biomembrane constituents. The phospholipid composition was similar in the older stages. With increasing storage of triacylglycerols in the lipid-rich immature and adult stages, the fatty acids 14:0, 16:0 and 18:1(n-9) prevailed, comprising about 70% of total triacylglycerol fatty acids. The trophic-marker fatty acids 16:1(n-7) and 18:4(n-3), indicating phytoplankton ingestion, were less abundant. They reflected, however, the dependence of the larvae on phytoplankton as well as the seasonal changes in algal composition. The generally close linear relationships between fatty acids and lipid suggest that the fatty-acid compositions of the collected specimens were largely independent of the respective developmental stage, season and region. The linear fit indicates that triacylglycerol accumulation started at a level of about 5% of total lipid. Considering the various overwintering scenarios under discussion, the life cycle and reproductive strategies of krill are discussed in the context of the lipid metabolism and fatty-acid composition of E. superba. Lipid production is effective enough to accumulate large energy reserves for the dark season, but E. superba does not exhibit the sophisticated biosynthetic pathways known from other Antarctic euphausiids and copepods. Although important, lipid utilisation appears to be just one of several strategies of E. superba to thrive under the extreme Antarctic conditions, and this pronounced versatility may explain the success of this species in the Southern Ocean. Received: 16 June 2000 / Accepted: 18 December 2000  相似文献   

5.
The complete larval development of Euphausia pacifica in the Yellow Sea is described and the stages are compared with larvae of E. nana. Euphausiid larvae examined in the present study were collected at 30 stations in the Yellow Sea in 1989. During the stages of Calyptopis III to Furcilia II, E. pacifica larvae are smaller than E. nana larvae but they are larger from Furcilia III onward. There are geographical variations in body size of Calyptopis III among the southern California waters, the eastern Japan waters, the Japan Sea, and the Yellow Sea; body size is smallest in the Yellow Sea and Japan Sea, while it is largest in southern California waters and intermediate in eastern Japan waters. Segmentation of antennal endopods was observed in the 56 to 51 furcilia forms in the Yellow Sea population, suggesting that this characteristic is not as reliable for identification of furcilia stages as the pleopods and terminal telson spines. Thus, we propose here that there are six furcilia stages of E. pacifica, instead of the seven previously reported by Boden (1950).  相似文献   

6.
The growth cycle and related vertical distribution of the thecosomatous pteropod Spiratella (“Limacina”) helicina (Phipps) were studied. S. helicina has a life cycle of approximately 1.5 to 2 years in the central Arctic Ocean (Canada Basin). It spawns mainly during the spring to summer period, and on a small scale during the winter. The young double their sizes during the winter months of October to May, slow down in growth until late summer, and attain maximum size in early winter. The oldest disappear by late March. Gonadal tissue was first seen in young pteropods of 0.7 mm diameter, the predominant size from February to April. S. helicina 0.8 mm in diameter, the size predominant from May through July, are mature and hermaphroditic. Growth during the winter months suggests that particulate organic matter is available during this period to these obligate ciliary feeders. Vertical distribution is size and season-dependent. The youngest specimens collected (0.2 to 0.4 mm) were found concentrated in the first 50 m. The larger sizes dispersed during the summer months, and tended to concentrate in the top 150 m during the rest of the year. They aggregated in the top 50 m from late winter through early spring, and fall through early winter; then concentrated in the 100 to 50 m level until the end of winter. Numerous environmental factors seem to be involved in determining the vertical distribution of the species in the central Arctic Ocean.  相似文献   

7.
T. Ikeda 《Marine Biology》1990,107(3):453-461
The abundance and vertical distribution pattern of a halocyprid ostracod,Conchoecia pseudodiscophora, were investigated in the Japan Sea in 1985, 1987 and 1989. Vertical sampling from 500 m depth to the surface in the water around Yamato Rise revealed that this ostracod was second in dominance by number and third to fourth by biomass of the total zooplankton collected with a 0.35 mm mesh Norpac net. Horizontal net tows in Toyama Bay indicated that the major population ofC. pseudodiscophora was distributed below 250 to 300 m depth. No diel migration pattern was evident. Its contribution to total zooplankton there was 5 to 10% or more in terms of biomass. A total of five subadult instars (II to VI) and adult males and females were identified from instar analysis based on sizes and morphological characteristics of specimens collected with 0.10 mm mesh Norpac nets. Data on body length, wet weight and dry weight of each instar are presented. Carbon content of 35 to 48% of dry weight, and nitrogen content of 5.3 to 7.3% of dry weight, were recorded on fresh, freeze-dried specimens of selected instars (subadult Instars IV to VI, adult females). Water and ash contents of mixed specimens of these four instars were 76% of wet weight and 25% of dry weight, respectively. Feasibility of laboratory maintenance ofC. pseudodiscophora was tested, and it produced characteristic J shaped faecal pellets. Oxygen consumption rates of subadult instars V and VI, and adult female ranged 0.011 to 0.021µl O2 ind.–1 h–1 at 1 °C, or 2.9 to 6.1µl O2 (mg body N)–0.85 h–1 in terms of Adjusted Metabolic Rate (AMRo 2). There was no appreciable metabolic reduction inC. pseudodiscophora compared to other ostracods, despite their mesopelagic life mode. Subdominance in total zooplankton and nonreduced metabolic activity ofC. pseudodiscophora suggest that this species may be an important link in mesopelagic energy-flow and matter cycling in the Japan Sea.  相似文献   

8.
This study developed an objective quantitative method for detecting small-scale temporal or spatial differences in gametogenesis in echinoderms. The method was applied to conventional monthly samples of the planktotrophic brittle star, Ophiopholis aculeata, collected at a single site in Newfoundland (eastern Canada) at 10–15 m depth. The samples were analysed to determine gonad index, oocyte size and gonadal stage using histology. The maturity stage index (MSI) was developed to integrate a measure of brittle star size (disc diameter), oocyte size and oocyte density. The MSIs ranged from 0 to 800 and had significantly different means among the four gametogenic stages (early growth, growth, mature and spent). The MSI was more sensitive in revealing significant differences between consecutive stages than any of its individual constituents. The MSI was also applied to gametogenic data from the lecithotrophic holothuroid, Mesothuria lactea, again revealing significant differences between successive oogenic stages. This method is expected to be useful in field and experimental studies of gametogenesis in echinoderms (and possibly other taxa), where it is important to detect not just the timing of annual peaks in reproduction but small differences in reproductive status among individuals or populations (e.g. from different habitats or feeding regimes).  相似文献   

9.
The behaviour of two rectangular midwater trawls, the RMT 1+8 and the RMT 1+8M, is described. The RMT 1+8 consists of a pair of rectangular nets contained within the same frame-a small mouth area RMT 1 of mesh size 320 m and a larger RMT 8 of mesh size 4.5 mm. The RMT 1+8M is a multiple version of the RMT 1+8, combining three RMT 1s and three RMT 8s within the same frame. An expression is developed to describe the dependence of mouth angle on speed for the RMT 1+8 when towed horizontally. Theoretical estimates of the changes in mouth angle with speed agree well with experimental observations. Within normal towing speeds the RMT 1+8 is sensitive to changes in speed; this sensitivity is especially marked in the RMT 1. Between speeds of about 2.6 and 8.0 knots the RMT 8 does not alter its mouth angle with changes in speed; this behaviour is not shown by the RMT 1—at least within a practical speed range. The performance of the RMT 1+8M cannot be completely described by the theory developed for the RMT 1+8 and possible explanations for this are discussed. The multiple net is considerably less sensitive to changes in towing speed; all three nets of each type have similar mouth angles at a constant speed. Variations in warp load with speed for both trawls are described.  相似文献   

10.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

11.
Cassidulus mitis Krau, 1954 is an endemic species from Rio de Janeiro, Brazil. To study the reproductive cycle of this species, samples were collected at Praia Vermelha, in Guanabara Bay, from October 1998 to April 2000. The sex ratio for C. mitis was 1:1, and reproduction occurred throughout the year. The gonadal index of males was greater than that of females. Five gametogenic stages were identified in males: early growth, premature, mature, partially spawned and early growth with a partially spawned stage. There were no spent or recovery stages such as those seen in females. Females had six gametogenic stages: recovery, early growth, premature, mature, partially spawned and spent stage; there was no early growth with a partially spawned stage as there was in males. The mean oocyte diameter was 382 m (SD=49 m), and the mean number of juveniles per female was 100 individuals (SD=108). The anterior gonads were frequently smaller than the posterior ones, and there were differences in the gametogenic stages between the anterior and posterior gonads. First sexual maturation occurred in individuals with a diameter of 17 mm. The intestinal wet weight was two- to threefold higher than the test wet weight. This may indicate that C. mitis uses its intestine as a weight belt to avoid displacement from the substratum.Communicated by P.W. Sammarco, Chauvin  相似文献   

12.
Seasonal changes in gonald size and stages of gametogenesis in the black abalone Haliotis cracheroidii were related to changes in environmental parameters. H. cracheroidii showed an annual reproductive cycle terminating in a synchronized spawning in late summer. Gametogenesis was initiated immediately after spawning. Gametes were present in the gonad through the winter months. Gametogenesis was initiated a second time in the spring months. Maximal gonad growth (to a gonad index of 20%) occurred during summer months prior to spawning. Changes in gonad size andperiods of initiation of gametogenesis revealed no apparent correlation with changes in seasonal water temperature. Changes in gonad size showed no apparent relation to change in day length. Total polysaccharide levels in foot tissue changed seasonally, indicating that food availability is probably not a factor in directly regulating gonad growth. Gonad index data for the chiton Katharina tunicata (collected over a 10 year period) showed no apparent correlation to seasonal change in water temperature.  相似文献   

13.
Vertical distribution and population structure of four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) were investigated in the Oyashio region, western subarctic Pacific. Seasonal samples were collected with 0.06 mm mesh nets from five discrete layers between the surface and 2,000 m depth at seven occasions (March, May, June, August and October 2002, December 2003 and February 2004). The depth of occurrence of major populations of each species differed by species; the surface–250 m for T. borealis, 250–1,000 m for T. canadensis, 250–500 m for O. grossa and 500–1,000 m for O. parila. The ontogenetic vertical migration characterized by deeper occurrence of early and late copepodid stages, and shallower occurrence of middle copepodid stages was observed in T. canadensis and O. parila. Of the four oncaeid copepods, almost all copepodid stages occurred throughout the study period, suggesting that their reproduction continues throughout the year in the region. Nevertheless, a clear developmental sequence of stage-to-stage was traced for T. canadensis and O. grossa copepodids, implying their generation time to be 1 year. For T. borealis and O. parila copepodids, no clear seasonal succession was observed thus estimation of their generation time was uncertain. The present comprehensive results of vertical distribution and life cycle features for T. borealis, T. canadensis, O. grossa and O. parila are compared with the few published data on oncaeid species distributing in high latitude seas.  相似文献   

14.
The growth of animals in most taxa has long been well described, but the phylum Porifera has remained a notable exception. The giant barrel sponge Xestospongia muta dominates Caribbean coral reef communities, where it is an important spatial competitor, increases habitat complexity, and filters seawater. It has been called the ‘redwood of the reef’ because of its size (often >1 m height and diameter) and presumed long life, but very little is known about its demography. Since 1997, we have established and monitored 12 permanent 16 m diameter circular transects on the reef slope off Key Largo, Florida, to study this important species. Over a 4.5-year interval, we measured the volume of 104 tagged sponges using digital images to determine growth rates of X. muta. Five models were fit to the cubed root of initial and final volume estimates to determine which best described growth. Additional measurements of 33 sponges were taken over 6-month intervals to examine the relationship between the spongocoel, or inner-osculum space, and sponge size, and to examine short-term growth dynamics. Sponge volumes ranged from 24.05 to 80,281.67 cm3. Growth was variable, and specific growth rates decreased with increasing sponge size. The mean specific growth rate was 0.52 ± 0.65 year−1, but sponges grew as fast or slow as 404 or 2% year−1. Negative growth rates occurred over short temporal scales and growth varied seasonally, significantly faster during the summer. No differences in specific growth rate were found between transects at three different depths (15, 20, 30 m) or at two different reef sites. Spongocoel volume was positively allometric with increasing sponge size and scaling between the vertical and horizontal dimensions of the sponge indicated that morphology changes from a frustum of a cone to cylindrical as volume increases. Growth of X. muta was best described by the general von Bertalanffy and Tanaka growth curves. The largest sponge within our transects (1.23 × 0.98 m height × diameter) was estimated to be 127 years old. Although age extrapolations for very large sponges are subject to more error, the largest sponges on Caribbean reefs may be in excess of 2,300 years, placing X. muta among the longest-lived animals on earth.  相似文献   

15.
T. Ikeda 《Marine Biology》1995,123(4):789-798
The vertical distribution, growth, maturation, brood size and life cycle of the hyperiid amphipod Primno abyssalis (formerly P. macropa) were investigated using seasonal samples collected from Toyama Bay, southern Japan Sea, during the period June 1986 to September 1992. Over four different seasons of the year, P. abyssalis was most abundant in the 200 to 350 m strata at night and the 350 to 400 m strata during the day, indicating 100 to 150 m as the general distance of diel vertical movement. Some differences in vertical migrating behavior were noted among juveniles, adult males and females. Population-structure analysis revealed the occurrence of three cohorts aged 0+, 1+ and 2+ yr. Growth as body length in this species is linear with time. Estimated time to complete one life cycle is 1.8 to 2.5 yr for females, but only 0.8 yr for males. Maximum longevity is 2.8 yr. Instar analysis based on the segment number of pleopod rami indicated that newly hatched juveniles molt ten times to reach adult male, and four more times to reach adult female. Adult instar number was found to be only 1 for males and 5 for females. Ovigerous females occurred throughout the year, but the annual peak of release of juveniles from the female's marsupium is estimated to be arly March. Brood size was not correlated with female size, a maximum brood size of 214 eggs was recorded. The dry and ash-free dry weights of instars suggested that juveniles in the female marsupium, adult males, and older adult females are less active feeding or non-feeding stages. Except for the reduced growth rate and the occurrence of small, short-lived males, most characteristics of P. abyssalis are consistent with the present view of the life modes of mesopelagic animals, including linear growth in length, aseasonal reproduction, and smaller brood size coupled with larger eggs.  相似文献   

16.
K. Véliz  M. Edding  F. Tala  I. Gómez 《Marine Biology》2006,149(5):1015-1024
The effects of exposure to ultraviolet radiation (UVR), 280–400 nm, in different life histories and development stages of the kelps, Lessonia nigrescens and L. trabeculata, collected in the south-east Pacific coast (30°S) were evaluated in the laboratory. Germination and viability (motile zoospores, settled spores), diameter of the primary cell of the gametophytes, percentage of female gametophytes, fertility and sporophytes production were measured after exposure to three radiation treatments (PAR; PAR + UVA; PAR + UVA + UVB). The effects of UVR in young sporophytes (diploid stage) were evaluated as changes in maximal quantum yield of chlorophyll fluorescence of photosystem II (PSII) (F v/F m). A significant decrease in all variables was observed for the treatment that included UVB (PAR + UVA + UVB) after 2 and 4 h of exposure, in relation to the control. The motile spores were more sensitive to UVR exposure compared to settled spores and gametophytes, suggesting that along with an increase in ontogenetic development; there is an increase in the tolerance to UVR. In addition, it was observed that early stages of the intertidal L. nigrescens were more tolerant to UVR compared to the subtidal L. trabeculata. These results allow initially to infer that UVR may be regarded as an important environmental factor influencing the upper limit of distribution of these species, mainly through its detrimental effects on the early stages of the life cycle.  相似文献   

17.
Three sets of zooplankton trawls with multiple nets were deployed in June 1990 within a deep (2000 m) scattering layer overlying the central hydrothermal vent field on the Endeavour segment of Juan de Fuca Ridge in the northeast Pacific. Trawl data were collected concurrently with temperature, salinity, light attenuation and acoustic (150 kHz) backscatter profiles. We describe the composition, size distribution and biomass of zooplankton collected in the net samples, and compare biomass distributions with physical characteristics of the hydrothermal plume. The nine discrete trawl samples (1 mm mesh) contained zooplankton biomass of between 0.3 and 21 mg dry wt m-3 with the highest biomass samples coincident with large and positive (+20 dB) acoustic backscatter anomalies observed above the top of the hydrothermal plume. Lowest biomass samples were coincident with small, negative (-5 dB) backscatter anomalies within the core of the plume. Results suggest that the region within a hundred meters of the top of the plume was a zone of enhanced zooplankton concentration associated with nutrition enrichment related to the plume. In contrast, the plume core was a zone of faunal depletion, presumably linked to adverse plume chemistry. The species composition and size distribution profiles from net samples revealed that the epi-plume assemblage contained several trophic levels of bathypelagic fauna, but did not contain benthic larvae or vent-related benthopelagic fauna.  相似文献   

18.
Hilbish  T. J. 《Marine Biology》1985,85(2):163-169
Feeding rates, patterns of prey selection, and starvation tolerance were investigated for adult males and females of the cyclopoid copepod Corycaeus anglicus collected from the waters of Friday Harbor, Washington, USA. Selection by C. anglicus was determined largely by prey body-size, but was also affected by species and developmental stage. Small developmental stages of all prey species were fed upon at relatively low rates. The small calanoid species Acartia clausii was increasingly vulnerable to predation by C. anglicus as it progressed through successive developmental stages. Larger prey species, Pseudocalanus sp. and Calanus pacificus, were more vulnerable in intermediate stages, the C3 and N6 stages, respectively. Larger and smaller prey were characteristically attacked at different sites on their bodies; however, attack sites fell within a similar range of body widths, 130 to 170 m. Males of Corycaeus anglicus killed a maximum of 1.4 prey d-1 when feeding on the optimally-sized adult females of Acartia clausii, which are approximately equivalent to its own body length. Males fed at approximately double the rates of females. Despite its small size and apparent lack of metabolic stores, this cyclopoid is highly tolerant of starvation conditions. Median survival time without food is at least 2 wk for both males and females. In its predatory behavior, C. anglicus employs an ambush-type strategy and seems to be adapted for infrequent encounters with relatively large prey.Contribution No. 1412 from the School of Oceanography, University of Washington, Seattle  相似文献   

19.
The distribution and fine structure of muscle-fibre types has been determined for the pelagic fingerling and demersal adult stages of the antarctic teleost Notothenia neglecta Nybelin, collected from Signy Island, Antarctica, between January and February 1984. In both stages, the pectoral fin adductor muscle (m.ad.p) is largely composed of slow fibres which contain abundant mitochondria (34 to 36%). During development, the ratio of capillaries to fibres increases less than does fibre diameter, so that capillary density is significantly lower in the m.ad.p of adults (498 mm-2) than fingerlings (1 727 mm-2). The secondary metamorphosis from a pelagic to a demersal mode of life is associated with the disappearance of subcutaneous lipid sacs and major changes in the distribution and structure of muscle fibres in the myotomes. The trunk cross-section of adult fish is almost entirely composed of poorly vascularised fast-muscle fibres (100 capillaries mm-2), which contain densely packed myofibrils (86.3%), and have few mitochondria (1.4%). Slow-muscle fibres in adults are restricted to a thin wedge adjacent to the lateral line canal. In contrast, slow fibres occur around the entire circumference of the trunk in fingerlings representing 24% of the total cross-sectional area at the post-anal level. Volume densities (%) of mitochondria, intracellular lipid and myofibrils in this tissue are respectively 37.0, 7.9, 38.6 for fingerlings and 13.1, 0, 70.3 for adults. Slow-muscle fibres in adult fish are of unusually large diameter (50 to 120 m) and have relatively low capillary densities (266 mm-2). These morphological changes reflect a general decrease in activity and a shift from a sub-carangiform to a labriform mode of swimming following transition from the fingerling to adult stage of the life cycle. The results are briefly discussed in relation to the physiology and ecology of antarctic fish.Please address all correspondence and requests for reprints to Dr. I.A. Johnston  相似文献   

20.
J. Vidal 《Marine Biology》1980,56(2):111-134
Changes in dry weight and in weight-specific growth rates were measured for copepodite stages of Calanus pacificus Brodsky and Pseudocalanus sp. cultured under various combinations of phytoplankton concentration and temperature. Mean dry weight of early copepodites was relatively unaffected by either food concentration or temperature, but mean dry weight of late stages increased hyperbolically with food concentration and was inversely related to temperature. The food concentration at which maximum body weight was attained increased with increasing temperature and body size, and it was considerably higher for C. pacificus than for Pseudocalanus sp. This suggests that final body size of small species of copepods may be determined primarily by temperature, whereas final body size of large species may be more dependent on food concentration than on temperature. Individual body weight increased sigmoidally with age. The weight-specific growth rate increased hyperbolically with food concentration. The maximum growth rate decreased logarithmically with a linear increase in body weight, and the slope of the lines was proportional to temperature. The critical food concentration for growth increased with body size proportionally more at high than at low temperature, and it was considerably higher for C. pacificus than for Pseudocalanus sp. Because of these interactions, early copepodites optimized growth at high temperature, even at low food concentrations, but under similar food conditions late stages attained higher growth at low temperature. The same growth patterns were found for both species, but the rates were significantly higher for the larger species, C. pacificus, than for the smaller one, Pseudocalanus sp. On the basis of findings in this study and of analyses of relationships between the maximum growth rate, body size, and temperature from other studies it is postulated (1) that the extrapolation of growth rates from one species to another on the basis of similarity in body size is not justified, even for taxonomically related species; (2) that the allometric model is inadequate for describing the relationship between the maximum weight-specific growth rate and body size at the intraspecific level; (3) that the body-size dependence of this rate is strongly influenced by temperature; and (4) that species of zooplankton seem to be geographically and vertically distributed, in relation to body size and food availability, to optimize growth rates at various stages of their life cycles.Contribution No. 1127 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号