首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Natural Bulgarian zeolite was tested for its ability to remove Cu2+ from model wastewater. Influence of process variables was investigated. It was found that the optimum wastewater to zeolite ratio is 100:1 and the optimum pH value of water to be treated is 5.5 to 7.5. Zeolite with finer particles shows a higher uptake capacity. The simultaneous presence of Ca2+ and Mg2+ in concentrations similar to their concentrations in Bulgarian natural water does not significantly influence the uptake of Cu2+. Zeolite modification by treating it with NaCl, CH3COONa and NaOH increases its uptake ability. Copper ions are strongly immobilized by modified zeolite and secondary pollution of water caused by its contact with preloaded zeolite is very low (1.5-2.5% of Cu2+ preliminary immobilized have been released back into acidified water). Contacting with 2 mol dm(-3) NaCl can easily regenerate loaded zeolite; best results were obtained for zeolite modified with NaCl. Requirements of Bulgarian standards for industrial wastewater can be met by a one-stage process for an initial Cu2+ concentration of 10 mg dm(-3), and by a two stage process for an initial Cu2+ concentration of 50 mg dm(-3). Uptake of Cu2+ by zeolite from neutral wastewater has proved to be as effective as Cu2+ removal by precipitation of copper hydroxide. The process of Cu2+ uptake by natural zeolite is best described by the kinetic equation for adsorption. This fact, together with the correlation found between the Cu2+ uptake and the amount of Na+, Ca2+ and K+ released into solution by zeolite shows that the ion exchange sorption plays the basic role in Cu2+ uptake by natural zeolite. The value obtained for the apparent activation energy (26.112 kJ mol(-1) implies that the process can be easily carried out with a satisfactory rate. The uptake equilibrium is best described by the Langmuir adsorption isotherm, with Langmuir constants KL= 6.4 x 10(-2) dm3 mg(-1) and M = 6.74 mg g(-1). The apparent equilibrium constant found shows moderate affinity of zeolite for Cu2+. Values of deltaG degrees and deltaH degrees found show the spontaneous and endothermic nature of the process of Cu2+ uptake by natural zeolite.  相似文献   

2.
In this study, chitosan and bio-based activated carbon obtained from sugarcane bagasse biowaste were used for the synthesis of efficient sorbent for Cu(II) and Cd(II) ion via precipitation method. The prepared material was enriched with amino groups through grafting tetraethylenepentamine and tested for heavy metal remediation from water samples. The influence of pH was investigated showing optimum sorption at pH 6 for Cu(II) and Cd(II). Sorption tests, explained by means of the most common sorption models, evidenced that the best performances were reached pointing out the promising application of the prepared sorbent for water purification treatments: Uptake kinetics are relatively fast: the equilibrium was reached within 140 min; and the kinetic profiles were preferentially fitted by the pseudo-second order rate equation. Sorption isotherms are fitted by Langmuir equation. The sorbent showed high metal ion sorption capacity with negligible influence of ion strength. The maximum sorption capacities reached 3.44 and 2.38 mmol g??1 for Cu(II) and Cd(II), respectively at 298 K. Thermodynamic parameters were evaluated through variation of temperature. The sorption is unfavorable at elevated temperatures. Metal ions were successfully desorbed using 1 M HNO3 solution.  相似文献   

3.
Sorption of Sr on bentonite was studied using the batch technique. Distribution coefficients (Kd) were determined as a function of contact time, pH, sorbent and sorbate concentration and temperature. The data were interpreted in terms of Freundlich, Langmuir and Dubinin-Radushkevich isotherms. Thermodynamic parameters for the sorption system were determined at three different temperatures. The positive value of the heat of sorption, ΔH° = 30.62 kJ/mol at 298 K, shows that the sorption of strontium on bentonite is endothermic. The negative value of the free energy of sorption, ΔG° = −10.69 kJ/mol at 298 K, shows the spontaneity of the reaction. ΔG° becomes more negative with increasing temperature, which shows that the sorption process is more favorable at higher temperatures. The mean free energy for sorption, E 9 kJ/mol, suggests that ion exchange is the predominant mode of sorption in the Sr concentration range studied, i.e. 0.01 – 0.3 mol/dm3. The presence of complementary cations depresses the sorption of strontium on bentonite in the order Ca2+>Mg2+>K+>Na+. Some organic complexing agents and natural ligands also affect the sorption of strontium. The desorption studies with ground water at low strontium loadings on bentonite show that about 90% of Sr is irreversibly sorbed on the bentonite.  相似文献   

4.
Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.  相似文献   

5.
Per and polyfluoroalkyl substances (PFAS) are emerging and persistent organic pollutants that have been detected in many environmental media, humans, and wildlife. A common method to effectively remove PFAS from water is adsorption by activated carbon. Preliminary sorption experiments were conducted using five characterized Calgon Corporation coal‐based granular activated carbon (GAC; F100, F200, F816, F300, and F400), one coconut‐based GAC (CBC‐OLC 12 × 30), and one Jacobi Corporation coal‐based GAC (Omni‐G 12 × 40). Sorption of four representative PFAS onto each GAC was measured to select the most favorable carbon sources. F400 and CBC were chosen based on their performance in preliminary PFAS sorption experiments and contrasting properties. Freundlich and Langmuir isotherm models were developed for perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) at an initial concentration of 1 mg/L. Sorption capacities were determined for PFOA and PFOS individually and in the mixture. Individual compounds showed higher sorption than when present in the mixture for both PFOA and PFOS. PFOS showed higher sorption than PFOA both individually and in the mixture and F400 showed higher sorption capacity than CBC. The presence of co‐contaminants (kerosene, trichloroethylene, and ethanol), and variations in groundwater conditions (pH, presence of anions, naturally occurring organic matter, and iron oxides) demonstrated limited impact on the sorption of PFAS onto GAC under the experimental conditions tested.  相似文献   

6.
Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste. The backfill is considered to be a chemical environment with some potential for colloid generation and, due to its high porosity, for colloid mobility. Colloid concentration measurements were carried out using an in-situ liquid particle counting system. The in-house developed counting system with three commercially available sensors allowed the detection of single particles and colloids at low concentrations in the size range 50-5000 nm. The counting system was tested using suspensions prepared from certified size standards. The concentrations of colloids with size range 50-1000 nm were measured in cement pore water, which was collected from a column filled with a highly permeable backfill mortar. The chemical composition of the pore water corresponded to a Ca(OH)2-controlled cement system. Colloid concentrations in the backfill pore water were found to be typically lower than approximately 0.1 ppm. The specific (geometric) surface areas of the colloid populations were in the range 240 m2 g(-1) to 770 m2 g(-1). The low colloid inventories observed in this study can be explained by the high ionic strength and Ca concentrations of the cement pore water. These conditions are favourable for colloid-colloid and colloid-backfill interactions and unfavourable for colloid-enhanced nuclide transport.  相似文献   

7.
To provide reliable K(d) data for Cs required for the performance assessment of cement-based radioactive waste repositories, two complementary approaches were followed. First, Cs sorption was determined on a range of hydrated cement paste (HCP) and mortar samples of CEM I and CEM V for different degradation states and solution compositions, as well as on some single mineral phases. Second, a surface complexation-diffuse layer model previously developed by Pointeau et al. [Pointeau, I., Marmier, N., Fromage, F., Fedoroff, M., Giffaut, E., 2001. Cs and Pb uptake by CSH phases of hydrated cement. Material Research Society Symposium Proceedings, 663, 105-113] for Cs sorption on synthetic CSH phases was simplified to facilitate its application to whole HCP and mortars or concrete, following re-assessment of the model parameters. All measurements were compared with model predictions. The sorption data obtained on the different solid phases as a function of conditions corroborate that CSH minerals are the main sorbing phase for Cs in HCP. The data also clearly show the important influence of pH and the dissolved concentration of Na, K and Ca on K(d). It is further suggested that a decrease of pH is concomitant with a decrease of the Ca/Si ratio and a corresponding increase in surface sites with high affinity for Cs and, thus, K(d). Elevated concentrations of cations able to compete with Cs for these sites lead to a decrease of K(d), on the other hand. The simplified model was applied to the sorption measurements performed within this study as well as to a variety of literature data, mainly K(d) values for a variety of fresh HCP and mortar or concrete samples based on different samples of Ordinary Portland Cement as well as blended cements. The results show that the model can be applied reasonably well to a very large variety of conditions in terms of solid and solution compositions that cover a range of K(d) values from 10(-4) to ca. 3.2m(3)/kg. The large scatter typically observed for Cs sorption, especially on fresh HCP samples prepared from different formulations, can be explained quantitatively by the variable concentrations of Na and K in the respective solutions, which compete with Cs for fixation sites. On the other hand, the comparatively uniform conditions in degraded HCP typically render the prediction of K(d) values less uncertain than in case of fresh HCP.  相似文献   

8.
The potential use of dried activated sludge and fly ash as a substitute for granular activated carbon for removing mono-chlorinated phenols (o-chlorophenol and p-chlorophenol) was examined. The pollutant binding capacity of the adsorbent/biosorbent was shown to be a function of substituted group, initial pH and initial mono-chlorinated phenol concentration. The working sorption pH value was determined as 1.0 and the equilibrium uptake increased with increasing initial mono-chlorinated phenol concentration up to 500 mg dm(-3) for all the mono-chlorinated phenol-sorbent systems. The suitability of the Freundlich, Langmuir and Redlich-Peterson adsorption models to the equilibrium data were investigated for each mono-chlorinated phenol-sorbent system. The results showed that the equilibrium data for all the mono-chlorinated phenol-sorbent systems fitted the Redlich-Peterson model best within the concentration range studied.  相似文献   

9.
In this research, a novel thermosensitive nanosphere polymer (TNP) was synthesized by copolymerization of N-isopropylacrylamide with 3-allyloxy-1,2-propanediol for the removal of diazinon from water. The characterization of the synthesized adsorbent has been performed by Fourier transform infrared spectrometer, scanning electron microscopy and elemental analysis. Batch adsorption method was performed to investigate the influences of various parameters like pH, temperature and contact time on the adsorption of diazinon. The equilibrium adsorption data of diazinon by TNP was studied by Langmuir, Freundlich, Temkin and Redlich–Peterson model. According to equilibrium adsorption results, the Langmuir, Freundlich and Temkin constants were evaluated to be 0.912 (L/mg), 7.916 (mg/g) (L/mg)1/n and 2.494 respectively at pH 7 and room temperature. Based on Redlich–Peterson model analysis, the equilibrium data for the adsorption of diazinon was conformed well to the Langmuir isotherm model. This method was successfully applied for removal of diazinon from environmental samples. Moreover, in reusing of TNP, the sorption capacity was maintained without any significant change after 10 cycles of sorption–desorption process.  相似文献   

10.
二壬基萘磺酸反胶团萃取模拟废水中的铅   总被引:1,自引:0,他引:1       下载免费PDF全文
以二壬基萘磺酸(DNNSA)反胶团煤油溶液萃取模拟含铅废水中的铅。在萃取前水相中铅离子浓度为3×10-4 mol/L、DNNSA浓度为0.010 mol/L、油水比为1∶20、模拟含铅废水pH为6、萃取温度为303 K、萃取时间为40 min的条件下,萃取后水相中铅离子浓度为0.845×10-4 mol/L,有机相中铅离子浓度为4.517×10-3 mol/L,铅萃取率为71.83%。DNNSA反胶团萃取铅离子萃取容量为1 188.62 mg/g,热力学焓变为2.595 kJ/mol。  相似文献   

11.
以铅离子为模板离子、乙二醇二甲基丙烯酸酯和偶氮二异丁腈为交联剂和引发剂、稀盐酸为洗脱剂,采用微波辅助反相乳液悬浮聚合法,制备了磁性离子印迹聚合物(MIIP),通过SEM、FTIR、XRD和BET技术对其进行了表征,并将其用于水中Pb(Ⅱ)的吸附.在初始质量浓度60 mg/L、溶液pH 6、吸附温度303 K、吸附时间6...  相似文献   

12.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

13.
Sorption onto minerals in the geologic setting may help to mitigate potential radionuclide transport from the proposed high-level radioactive waste repository at Yucca Mountain (YM), Nevada. An approach is developed for including aspects of more mechanistic sorption models into current probabilistic performance assessment (PA) calculations. Data on water chemistry from the vicinity of YM are screened and used to calculate the ranges in parameters that could exert control on radionuclide sorption behavior. Using a diffuse-layer surface complexation model, sorption parameters for Np(V) and U(VI) are calculated based on the chemistry of each water sample. Model results suggest that lognormal probability distribution functions (PDFs) of sorption parameters are appropriate for most of the samples, but the calculated range is almost five orders of magnitude for Np(V) sorption and nine orders of magnitude for U(VI) sorption. Calculated sorption parameters may also vary at a single sample location by almost a factor of 10 over time periods of the order of days to years due to changes in chemistry, although sampling and analytical methodologies may introduce artifacts that add uncertainty to the evaluation of these fluctuations. Finally, correlation coefficients between the calculated Np(V) and U(VI) sorption parameters can be included as input into PA sampling routines, so that the value selected for one radionuclide sorption parameter is conditioned by its statistical relationship to the others. The approaches outlined here can be adapted readily to current PA efforts, using site-specific information to provide geochemical constraints on PDFs for radionuclide transport parameters.  相似文献   

14.
The immobilization of MSWI-scrubber residues with soluble PO4(3-) was studied and compared to the immobilization using cement. The DIN 38414-S4 leaching protocol and pH dependent leaching were used to evaluate the leaching of Pb and Zn. Four different scrubber residues from MSW combustion (Pb concentration: 2.8-4.8 mg/g; Zn concentration: 3.0-12.3 mg/g) were mixed with water and cement or Na2HPO4 as source of soluble PO4(3-) at dosages of at least 0, 0.1, 0.2, 0.3 and 0.4 g per g residue. With cement as well as with PO4(3-) a reduction in Pb and Zn leaching was observed. With 0.4 g cement per g residue, the Pb leaching was reduced by a factor ranging from 70 to 100, but still exceeded the Pb landfill limit of 2 mg/l. With PO4(3-) the Pb leaching was reduced with a factor of 100-300 to below 2 mg/l. The Zn landfill limit (10 mg/l) was only exceeded by one untreated residue. Adding 0.2 g cement or 0.1 g PO4(3-) per g of that residue was enough to reduce leaching below 10 mg/l. However, when 0.6 g Na2HPO4 per g residue was added to a lime based scrubber residue, an increase in Zn leaching up to 12.5 mg/l was observed due to an increase in pH of up to 13.0. When using NaH2PO4 and H3PO4 no such increase in Zn leaching was observed. pH dependent leaching performed on one of the four residues showed that in the pH range of 2.5-6, Pb leaching was 100-50 times lower with Na2HPO4 treatment than with cement. In the pH range from 7-11, almost equal results were obtained for cement treated and Na2HPO4 treated residue. Above a pH of 12, Pb leaching was three times lower for the PO(4)(3-)-treated residue than for the cement treated residue. With soluble PO4(3-), Pb leaching below 2 mg/l could be attained at a dosage of 0.27 g PO4(3-)/g residue. With cement, Pb leaching was never below 2 mg/l.  相似文献   

15.
方向青  李雅  张瑛  陈红丽 《化工环保》2017,37(4):427-432
以发烟硅胶为硅源、钛酸四丁酯为钛源,采用水热合成法制备了一系列不同n(Si)∶n(Ti)的Ti-MCM-41分子筛,采用XRD、UV-Vis、BET及ICP技术对其进行了表征,考察了其对溶液中Cr(Ⅵ)的吸附性能及重复使用性能。结果表明:制备的Ti-MCM-41分子筛保持了MCM-41的介孔结构,但随着Ti含量的增加分子筛的比表面积、孔径和总孔体积均降低;在初始Cr(Ⅵ)质量浓度为100 mg/L、Ti-MCM-41分子筛(投料n(Si)∶n(Ti)为40)投加量为1 g/L、吸附时间为60 min、吸附温度为323 K、溶液pH为6的条件下,Cr(Ⅵ)吸附率可达96.3%;Ti-MCM-41分子筛对Cr(Ⅵ)的吸附符合Langmuir等温吸附模型;Ti-MCM-41分子筛的重复使用性能良好。  相似文献   

16.
The behaviour of three organic ligands in suspensions of fresh and degraded hydrated ordinary Portland cement pastes (HCP) has been investigated. EDTA arises as a decontamination product whilst ISA (isosaccharinic acid) is a main degradation product of cellulose. GLU (gluconic acid) is used as a retarding organic admixture in concrete. The affinity of EDTA, ISA and GLU with HCP increases with the degradation state. At long contact times, ISA and GLU desorbed from HCP, perhaps as a result of carbonation. Their influence on the uptake of selenium (as SeO3(2-)) on HCP has been studied as a function of time, addition order and HCP degradation state. The sorption study of Se(IV) also shows a positive effect of the HCP degradation with R(d)=120 mLg(-1) for fresh HCP and 1000 mLg(-1) for degraded HCP. The addition order of Se(IV) and EDTA or ISA is important as pre-equilibration of HCP with either EDTA or ISA drastically decreases the uptake of Se(IV) to 10-30 mLg(-1). Mixing of cement with GLU seems to reduce the strong competitive effect of other organic compounds on Se(IV) sorption.  相似文献   

17.
The ability of low-cost activated carbon prepared from Ceiba pentandra hulls, an agricultural waste material, for the removal of lead and zinc from aqueous solutions has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 6.0. Maximum removal of lead (99.5%) and of zinc (99.1%) with 10 g/l of sorbent was observed at 50 mg/L sorbate concentration. Removals of about 60-70% occurred in 10 min, and equilibrium was attained at around 50 min for both metals. The functional groups (CO, SO,-OH) present on the carbon surface were responsible for the adsorption of metal ions. The adsorption parameters were analysed using both the Freundlich and Langmuir models. The data are better fitted by the Freundlich isotherm as compared to Langmuir model, and the adsorption capacities for lead and zinc were 25.5 and 24.1 mg/g, respectively. Kinetics of adsorption obeyed a second order rate equation and the rate constant was found to be 2.71 x 10(-2) and 2.08 x 10(-2) g/mg/min for lead and zinc, respectively. The desorption studies were carried out using dilute HCl, and the effect of HCl concentration on desorption was studied. Maximum desorptions of 85% for lead and 78% for zinc were attained with 0.15 M HCl.  相似文献   

18.
Two activated carbons (ACs) prepared from cattle manure compost (CMC) by ZnCl(2) activation were selected and out-gassed in a helium flow at various temperatures for 2h. The pore structure and surface chemical properties of the two selected ACs and their out-gassing treated ACs were characterized using N(2) adsorption-desorption, elements analysis, SEM and Boehm titration. A basic dye, methylene blue (MB), was chosen as an adsorbate to investigate the adsorption capacity for organic contaminant onto the activated carbons. It was found that the out-gassing treatment at 400 degrees C had little effect on the textural characteristics of the carbons but significantly changed the surface chemical properties such as surface functional groups concentration, pH and pH(PZC). The CMC-based activated carbons exhibited excellent performance for MB adsorption due to their high surface area, large mesopore volume and high nitrogen content. The kinetics of MB adsorption onto the activated carbons followed a pseudo-second-order equation, and the equilibrium data agreed well with the Langmuir model under the experimental conditions. The highest adsorption rate constant of k(ad) and the largest adsorption capacity of q(m) were found be 1.44x10(-4)g/mgmin and 519mg/g, respectively. The results suggested that the CMC-based activated carbons were effective adsorbents for the removal of methylene blue from aqueous solution.  相似文献   

19.
超细粉煤灰对模拟废水中孔雀石绿的吸附性能   总被引:1,自引:0,他引:1  
以球磨制得的超细粉煤灰为吸附材料,采用振荡吸附法研究了其对模拟废水中孔雀石绿的吸附性能.实验结果表明:在超细粉煤灰加入量为10g/L、吸附温度为298K、初始孔雀石绿质量浓度为500mg/L、振荡时间为120min、孔雀石绿废水自然酸碱度条件下,达到吸附平衡时的吸附量为49.97 mg/g,孔雀石绿几乎全部被超细粉煤灰所吸附;该吸附反应很好地符合二级吸附动力学方程,Ea为3.95kJ/mol,吸附反应速率较快,吸附过程由孔雀石绿在超细粉煤灰颗粒内部的扩散控制;该吸附符合Langmuir吸附等温方程,随吸附温度升高,饱和吸附量下降,298K下的饱和吸附量可达526.32mg/g,是自发进行的放热反应过程.  相似文献   

20.
以正硅酸乙酯为硅源、3-氨丙基三乙氧基硅烷为改性剂,采用溶胶-凝胶法制备了氨基改性二氧化硅气凝胶,采用FTIR、SEM、TEM和BET技术对其进行了表征,并将其用于对水中镍离子的吸附。表征结果显示,改性前后的气凝胶均具有三维多孔网络结构,比表面积分别为877.35 m2/g和357.76 m2/g,平均孔径分别为10 nm和12 nm。实验结果表明:溶液pH为4~7时改性气凝胶对镍离子均保持较高的吸附量,溶液pH为6左右时吸附量最高;Langmuir等温吸附模型能更好地描述镍离子在改性气凝胶上的吸附行为,其饱和吸附量为70.03 mg/g,改性前仅为29.05 mg/g;改性气凝胶重复使用5次后,仍保持较高的镍离子去除率,重复使用性能良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号