首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
SBBR与人工湿地组合工艺脱氮除磷   总被引:1,自引:0,他引:1  
以人工合成污水为原水,以第二代生态碳纤维作为SBBR填料,考察了SBBR和人工湿地组合工艺脱氮除磷的性能。结果表明,SBBR系统能够实现同步硝化反硝化且可出现明显的释磷、吸磷现象,当SBBR厌氧75 min,曝气240 min,溶解氧在3.07~4.09 mg·L~(-1)之间时,组合工艺实现了能耗最低情况下的达标出水。此模式下,SBBR系统对COD、氨氮、TN和TP的去除率分别达到94.6%、94.8%、85.4%和61.1%。人工湿地采取间歇运行模式以进一步脱氮除磷,其中进水12h,放空复氧12 h,稳定后湿地对COD、氨氮、TN和TP的去除率分别达到39.3%、47.3%、61.5%和70.7%。此模式下整体组合工艺表现出了良好的脱氮除磷性能,系统出水COD、氨氮、TN和TP浓度均值分别为13.89、0.535、2.047和0.286 mg·L~(-1),去除率分别能够达到96.7%、97.3%、94.4%和88.6%。  相似文献   

2.
MBBR处理猪场废水厌氧消化液的研究   总被引:5,自引:0,他引:5  
采用移动床生物膜反应器(MBBR)处理猪场废水厌氧消化液,考察了水力停留时间(HRT),进水COD和NH3-N浓度对反应器处理效果的影响.结果表明,在温度为20~30℃,填料填充比为50%,进水COD和NH3-N浓度分别为1016 mg/L和496 mg/L条件下,当HRT为12.5 h时,COD和NH3-N去除率可分别达到62%和77%,猪场废水厌氧消化液中可生物降解性有机物基本得到去除,当HRT增至23.8 h时,COD和NH3-N去除率分别为64%和86%,出水COD和NH3-N浓度分别为368 mg/L和70 ms/L,均达到了<畜禽养殖业污染物排放标准>(GB18596-2001)的要求.  相似文献   

3.
采用静态吸附实验,对比了岷江砂、沱江砂、青衣江砂、沸石、活性炭对猪场废水厌氧消化液中氨氮的吸附去除效率,基于氨氮去除能力、购买成本与运费的比较,筛选出性价比较高的基质--岷江砂作为四川地区人工湿地的基质处理猪场废水厌氧消化液.吸附实验表明,砂对氨氮的去除率随振荡时间和投加量的增加而增加.通过吸附等温曲线Langmuir...  相似文献   

4.
厌氧氨氧化-羟基磷酸钙(anammox-hydroxyapatite,anammox-HAP)技术可实现污泥厌氧消化液高效自养脱氮同步磷回收.污泥厌氧消化液中磷的浓度与污泥性质、厌氧消化过程相关,变化范围很大.为探索anammox-HAP 系统中的磷回收效率,通过基于anammox-HAP长期运行的膨胀颗粒污泥床反应器...  相似文献   

5.
污泥厌氧消化液中碳酸盐对回收磷的影响   总被引:7,自引:4,他引:3  
为探讨污泥厌氧消化液中碳酸盐对以磷酸钙盐形式回收磷的影响,以粉煤灰浸出液为钙源,考察了消化液中的碳酸盐对磷回收过程和磷回收产物性质的影响。实验结果表明,在反应pH为10、反应钙磷摩尔比为1.67、反应时间为10 m in的条件下,消化液碳酸盐浓度为2 400 mg/L(以CaCO3计)时,磷的回收率为78.53%,回收产物中磷含量(以P2O5计)为28.93%;对消化液进行盐酸预酸化使pH达到4及以下时,磷回收率接近100%,回收产物中磷含量(以P2O5计)达到43.08%。消化液中碳酸盐的存在易形成碳酸钙沉淀,从而降低了磷回收率、回收产物中磷含量以及回收产品的纯度;预酸化能够有效地去除消化液中的碳酸盐并降低了其对磷回收的不利影响。  相似文献   

6.
具有异养硝化-好氧反硝化特性的粪产碱杆菌(Alcaligenes faecalis No.4)直接处理污泥厌氧消化液中的高浓度氨氮时,在60 h内氨氮(原始浓度441 mg/L)去除率约为18%。沼液中碳源验证实验表明,乙酸可作为其优质碳源。因而,可以通过外加乙酸钠的方式来解决污泥厌氧消化液碳源不足的问题。当污泥消化液中添加足够的碳源-乙酸钠使得C/N为10时,Alcaligenes faecalis No.4的脱氮效果良好,氨氮的去除率达到了98%以上。研究结果表明,在利用粪产碱杆菌处理高浓度氨氮沼液时,酸化污泥作为外加碳源的方式具有其理论可行性。  相似文献   

7.
张颖  邓良伟 《环境工程学报》2012,6(7):2345-2350
采用批式厌氧消化实验,研究了猪场废水厌氧消化过程中生物、物理和化学作用对磷去除的贡献。结果表明,厌氧消化6 d,灭菌的混合液几乎没有磷被去除;未灭菌的混合液,上清液总磷去除率为57.3%,且随着混合液总磷的减少,吸收液的磷逐渐增多,说明废水中的部分磷被转化成气态磷化合物并释放。将原水在4℃、厌氧条件下静置6 d,废水TP去除率为70.7%,说明物理沉降的除磷作用显著。对厌氧消化前后的污泥进行浸提,发现没有灭菌、灭菌混合液的污泥的Ca、Mg-RP(HCl-RP)含量分别增加93.4%和50.5%。由于没有灭菌的混合液的pH不断升高,灭菌的混合液的pH不断下降,说明生物的新陈代谢活动使得环境条件改变(pH增加)而有利于磷化合物沉淀的形成。实验表明,猪场废水厌氧消化过程中磷的去除是物理、化学及生物过程共同作用的结果。  相似文献   

8.
采用鸟粪石沉淀处理猪场沼液,出水再用光合细菌复合序批式生物膜反应器(SBBR)进一步处理,优化了鸟粪石沉淀的最佳Mg~(2+)∶NH_4~+(摩尔比)和光合细菌复合SBBR的最佳污泥停留时间(SRT)。结果表明:鸟粪石沉淀的最佳Mg~(2+)∶NH_4~+为1.3,COD、氨氮、TP和SS去除率分别可达52.86%、77.16%、83.24%、93.75%;光合细菌复合SBBR的最佳SRT为10d,运行第20天后基本达到稳定,COD、氨氮、TN和TP去除率分别达到87.19%~91.67%、90.18%~95.69%、82.79%~88.85%、74.81%~82.39%,稳定后鸟粪石沉淀—光合细菌复合SBBR对COD、氨氮、TN、TP的总去除率分别达到95.29%、98.39%、95.95%、96.95%以上。  相似文献   

9.
针对丝绸厂汰头废水高有机物浓度高氮磷的特点,对该废水的化学除磷工艺及生物化学组合除磷工艺的除磷效能进行了对比研究,考察了有机负荷、运行工况、工艺组合、药剂种类和投加量等对除磷效能的影响.试验结果表明:对汰头废水采用厌氧-生物除磷-生物脱氮-化学除磷组合工艺除磷经济高效,当生物除磷SBBR工艺单元有机负荷为3 kgBOD5/m3·d,运行工况为进水0.5 h-厌氧2 h-曝气4 h-沉淀1 h-排水0.5 h,化学除磷工艺单元投加60 mg/L聚合氯化铝(PAC)时,可使COD及PO3-4分别为10 000 mg/L和114 mg/L的进水,出水COD及PO3-4分别为93 mg/L和0.23 mg/L;总ηCOD91.5%,ηPO3-4为99.8%.其中生物除磷工艺单元承担的ηPO3-4为75%;化学除磷工艺单元承担的ηPO3-4为24.8%.  相似文献   

10.
不同碳源和泥龄对反硝化聚磷的影响   总被引:7,自引:1,他引:6  
在4个SBR装置(1#~4#)中,对4种不同比例的丙酸/乙酸合成废水采用厌氧/缺氧方式驯化富集反硝化聚磷菌(DPB),研究了碳源浓度和污泥龄对除磷的影响。实验结果表明:(1)厌氧段碳源COD浓度越高,释磷越充分,溶解性正磷酸盐(SOP)去除率越高;但当碳源COD浓度超过某个浓度值时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用。(2)污泥龄SRT=15 d时,活性污泥的性能较好,达到了较好的除磷效果。(3)在相同碳源浓度和相同的污泥龄下,随着丙酸/乙酸比例的提高,SOP的去除率逐渐的降低。说明在厌氧/缺氧环境下,碳源中丙酸比例的提高不利于系统中磷的去除。高乙酸含量的碳源更适合反硝化除磷系统。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

17.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

18.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号