首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has long been known that heavy metals, when in high enough concentration, have the potential to be both phytotoxic and zootoxic. Heavy metals are frequently found as contaminants in green waste. Any such waste that is subsequently segregated for composting theoretically has the potential to retain that possible contamination. To date, there have been a limited number of publications addressing this issue. Most reports have concentrated on the types of heavy metals found in compost and their acceptable levels, rather than the fate of heavy metal contaminants throughout the composting process. This investigation was aimed to identify the fate of cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb) and zinc (Zn) concentrations throughout a fourteen week composting cycle. The results of this study showed a general increase in the removal of Pb, Cu, Cr, and to a much smaller extent Zn, manifested by a decrease in their overall concentrations within the solid fraction of the final product, by 93, 49, 43, and 20 percent respectively. By contrast, there was no decrease in the overall concentration of Cd.  相似文献   

2.
Rapid development of wind energy has been witnessed in Thailand. However, different wind resource maps (over land) have brought great uncertainty to wind energy planning. Here, four important mesoscale wind maps were considered: DEDP (2001), World Bank (2001), Manomaiphiboon et al. (2010) of JGSEE, and DEDE (2010). The wind maps were first harmonized to a common grid at 100 m and then compared. The earlier wind maps (DEDP and World Bank) are shown to represent the lower and upper limits of predicted speed, respectively, while JGSEE and DEDE tend to be more moderate with predictions statistically closer to observations. A consolidated wind map was constructed based on their median and shown to have the best prediction performance. It was then used for the technical potential analysis, in which three large (2-MW) turbine models (two conventional and one designed for low wind speed) were considered. By GIS techniques, any land areas not feasible for large wind turbines were excluded, and the corresponding overall onshore technical potential ranges between 50 and 250 GW, depending on map and turbine model. Considering only economically feasible turbines (with capacity factors of 20%) and the median-based map, the final technical potential equals 17 GW when using the low-wind-speed model but is reduced to 5 GW with the conventional models, adequately meeting the national wind energy target of 3 GW by the year 2036. The results suggest a strong sensitivity of estimated technical potential to turbine technology and a suitability of low-wind-speed turbines for wind conditions in Thailand.  相似文献   

3.
Fate of biosolids trace metals in a dryland wheat agroecosystem   总被引:1,自引:0,他引:1  
Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, but these techniques do not quantify which soil phases play important roles in terms of metal release or attenuation. This study assessed the distribution of Cd, Cr, Cu, Mo, Ni, Pb, and Zn associated with soluble/exchangeable, specifically adsorbed/carbonate-bound, amorphous Mn hydroxyoxide-bound, amorphous Fe hydroxyoxide-bound, organically complexed, and residual inorganic phases. Biosolids were applied every 2 yr from 1982 to 2002 (except in 1998) at rates of 0, 6.7, 13.4, 26.8, and 40.3 dry Mg biosolids ha(-)(1) to 3.6- by 17.1-m plots. In 2003, 0- to 20-cm and 20- to 60-cm soil depths were collected and subjected to 4 mol L(-1) HNO(3) digestion and sequential extraction. Trace metals were concentrated in the 0- to 20-cm depth, with no significant observable downward movement using 4 mol L(-1) HNO(3) or sequential extraction. The sequential extraction showed nearly all measurable Cd present in relatively mobile forms and Cr, Cu, Mo, Ni, Pb, and Zn present in more resistant phases. Biosolids application did not affect Cd or Cr fractionation but did increase relatively immobile Cu, Mo, and Zn phases and relatively mobile Cu, Ni, and Pb pools. The mobile phases have not contributed to significant downward metal movement. Long-term, repeated biosolids applications at rates considered several times greater than agronomic levels should not significantly contribute to downward metal transport and ground water contamination for soils under similar climatic conditions, agronomic practices, and histories.  相似文献   

4.
In two sulfide-rich freshwater sediments from the Biesbosch and Kromme Rijn River in the Netherlands differing in carbonate content and acid volatile sulfide (AVS) content, metal and sulfide dissolution kinetics were studied at different acid concentrations by varying both the procedure of acid addition and the extraction time. The establishment of equilibrium was monitored by measuring the pH in time, which reached a near constant value. The equilibrium pH was reached quickly when large amounts of acid were added and slowly when small amounts of acid were added. This observation was confirmed by the yield of extracted metals after either a 45-min or 24-h extraction over a pH range from 0 to 5. The pH factor seemed to be of more influence than time for the dissolution of metals. The amount of extracted metals was highly dependent on the metal itself due to its physico-chemical behavior. Although the sediments studied varied in carbonate content, acid volatile sulfide (AVS), and total metal content, the extracted fraction of metals compared with their total content in the sediment was similar for most metals. Finally, the AVS content as well as the ratio of simultaneously extracted metals (SEM; sum of Cd, Cu, Ni, Pb, and Zn) to AVS decreased with increasing pH. Because the SEM to AVS ratio may be used to set environmental quality criteria for the sediment compartment, this observation is of significance.  相似文献   

5.
Samples of some popular brands of canned sardines in soybean oil in the Nigerian market were analyzed for levels of cadmium, lead, iron, cobalt, nickel, manganese, chromium, copper and zinc after wet digestion with acids by graphite furnace atomic absorption spectrophotometry. The mean concentrations for the metals in the different brands were as follows: cadmium 0.11–0.26 μg/g, iron 8.04–48.18 μg/g, cobalt 0.01–7.23 μg/g, nickel 0.04–3.26 μg/g, manganese 0.64–1.37 μg/g, chromium 0.01–0.10 μg/g, copper 0.10 μg/g and zinc 0.09–4.63 μg/g. Significant differences were observed in the heavy metal levels in the different brands of canned sardines except for copper and chromium. Cadmium, nickel and lead exceeded statutory safe limits.  相似文献   

6.
The biosorption of different metals (Cu2+, Cd2+, Zn2+, Ni2+ and Pb2+) was investigated using activated sludge. The optimum pH was 4 for Cd, Cu and Pb sorption and 5 for Ni and Zn. Biomass metal uptake clearly competed with protons present in the aqueous medium, making pH an important variable in the process. Protons consumed by biomass in control tests versus protons exchange in biosorption tests confirmed a maximum exchange between metal cations and protons at pH 2. The study of the influence of biomass concentration revealed that the amount of protons released from biomass increased with biomass concentration. This would confirm the hypothesis of ion exchange between both types of ions. The application of the Langmuir and Freundlich models showed a better fitting of experimental data to the first model. The maximum sorption uptake of the studied metals by the activated sludge showed the following decreasing order: Pb>Cu>CdZn>Ni. Desorption experiments showed that HCl was a good eluent for the five metals tested, particularly at low pH values (1 and 2). At pH 3 or 4 the desorption yield was significantly lower. However, its use did not allow the reuse of biomass in subsequent loading and unloading cycles. EDTA was also a good desorption agent, achieving the total recovery for the five metals tested at a concentration of 1mM, with the advantage that biomass could be reused for three sorption-desorption cycles.  相似文献   

7.
Solid waste presents the potential for contamination of the soil when it is improperly managed. One of the great challenges of today's society is to promote the proper disposal of municipal solid waste in order to guarantee the safety of public health and to avoid risks to the environment. In this context, the objective of this study is to analyze the concentration profiles of heavy metals and aromatic hydrocarbons of risk that human health in landfill soil. Such works provides an important tool to evaluate the possible presence of contaminants from inappropriate waste disposal, as well as to assist in the management of waste and to prevent environmental contamination. In order to analyze cadmium (Cd), lead (Pb), nickel (Ni), arsenic (As), and mercury (Hg), which are toxic elements, and aromatic hydrocarbons, including benzene, toluene, ethylbenzene, o‐xylene, m‐xylene, and p‐xylene, soil samples were collected at different sites and depths. Neither Cd nor As was detected in any of the samples that were analyzed. Pb levels ranged from 5.34 milligrams per kilograms (mg/kg) to 7.40 mg/kg, Ni levels ranged from 2.17 mg/kg to 3.00 mg/kg, and Hg levels ranged from 75.4 micrograms per kilograms (μg/kg) to 88.3 μg/kg. The aromatic hydrocarbon compounds of benzene, toluene, ethylbenzene, and o‐xylene were below 5.5 μg/kg, and m‐, p‐xylene was below 11 μg/kg. The analysis of heavy metals and aromatic hydrocarbons present in the landfill soil showed concentrations below the soil quality guideline values of the Brazilian National Environment Council (CONAMA) Resolution 420, which has criteria for the presence of chemical substances in soil for Brazil. Therefore, the low levels of chemicals may be related to the operational time of the landfill or to the population profile of the municipality, which is predominantly composed of persons involved in family‐based agriculture.  相似文献   

8.
Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows.  相似文献   

9.
During the treatment of sewage, a huge volume of sludge is generated, which is disposed of on land as soil fertilizer/conditioner due to the presence of nitrogen, phosphorus, potassium and other nutrients. However, the presence of toxic heavy metals and other toxic compounds in the sludge restricts its use as a fertilizer. Over the years, bioleaching has been developed as an environmentally friendly and cost-effective technology for the removal of heavy metals from the sludge. The present paper gives an overview of the various bioleaching studies carried out in different modes of operation. The various important aspects such as pathogen destruction, odor reduction and metal recovery from acidic leachate also have been discussed. Further, a detailed discussion was made on the various technical problems associated with the bioleaching process, which need to be addressed while developing the process on a larger scale.  相似文献   

10.
The potential risk of surface and ground water contamination by phosphorus (P) and heavy metals leached from compost-based containerized media has become an environmental concern. Solubility and fractionation of P and heavy metals were evaluated in media containing 0, 25, 50, 75, or 100% compost derived from biosolids and yard trimmings for potential impacts on the environment. As compost proportion in peat-based media increased from 0 to 100%, concentrations of total P, Cd, Cu, Ni, Pb, Zn, and Mn in the media increased whereas concentrations of total Co and Cr decreased. Except for Cu, all heavy metals in the water-soluble fraction decreased with increasing compost proportion in the media, because of higher Fe, Al, and Ca concentrations and pH values of the composts than the peat. When the media pH is controlled and maintained at normal range of plant growth (5.5-6.5), leaching of the heavy metals is minimal. Incorporation of compost to the peat-based media also decreased the proportion of total P that was water-soluble. However, concentrations of bioavailable inorganic phosphorus (NaHCO3-IP), readily mineralizable organic phosphorus (NaHCO3-OP), potentially bioavailable inorganic phosphorus (NaOH-IP), and potentially bioavailable organic phosphorus (NaOH-OP) were still higher in the media amended with compost because of higher total P concentration in the compost. Further study is needed to verify if less or no topdressing of chemical P fertilizer should be applied to the compost-amended media to minimize P effect on the environment when compost-amended potting media are used for nursery or greenhouse crop production systems.  相似文献   

11.
New highly fluorinated monodentate and bidentate phosphine oxide compounds of the type {CF(3)(CF(2))(n)CH(2)CH(2)}(3)PO (n = 5, 9) and [{CF(3)(CF(2))(5)CH(2)CH(2)}(2)P(O)CH(2)CH(2)P(O){CH(2)CH(2)(CF(2))(5)CF(3)}] have been prepared. Their ability to extract a number of metals and radionuclides from aqueous solutions into perfluorinated solvents has been established and the extractable species investigated. All extractants extract the metals As(V), Cd(II), Co(II), Cr(VI), Hg(II), Pb(II), and Sn(II) with >75% removal. In addition, the radioisotopes (90)Sr(II), (133)Ba(II), and U(VI) have been investigated, whilst (59)Fe(III) has been used to model the extraction of plutonium. (133)Ba(II) shows a high distribution ratio for monodentate phosphine oxides, whilst for UO(2)(2+) and (59)Fe(III) bidentate phosphine oxides are superior.  相似文献   

12.
A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes.  相似文献   

13.
Speciation of some heavy metals in River Nile sediments,Cairo, Egypt   总被引:1,自引:0,他引:1  
River sediments are basic components of our environment. It also constitutes a major source of persistent bioaccumulative toxic chemicals which may pose threats to ecological and human health even after contaminants are no longer released from point and non-point sources. Therefore, the aim of this study was to investigate the mobility and the availability of metals in sediments from different sites along the Nile River in Cairo district using sequential chemical extraction technique. The speciation data showed that most metals were associated with organic/sulfide and residual fractions. The order of total metal concentrations in sediment samples was found to be Fe > Mn > Zn > Ni > Cu ≥ Cr > Pb > Cd.  相似文献   

14.
Although nutrient-rich manure biochars are expected to be an effective heavy metal stabilizer in agricultural and contaminated soils, systematic studies are lacking to predict the influence of manure variety and pyrolysis temperature on metal-binding potentials. In this study, biochars produced from five manure varieties (dairy, paved feedlot, swine solids, poultry litter, and turkey litter) at two pyrolytic temperatures (350 and 700°C) were examined for the stabilization of Pb, Cu, Ni, and Cd in a weathered, acidic Norfolk loamy sand (fine-loamy, kaolinitic, thermic, Typic Kandiudult). Equilibrium concentrations in the aqueous phase were determined for heavy metals (Cu, Ni, Cd, and Pb) and additional selected elements (Na, P, S, Ca, Mg, Al, and K); these were analyzed by positive matrix factorization to quantitatively determine the factors responsible for the biochar's ability to bind the selected heavy metals in soil. Concurrently with the greatest increase in pH and highest equilibrium Na, S, and K concentrations, poultry litter, turkey litter, and feedlot 700°C biochar exhibited the greatest heavy metal retention. In contrast, manure varieties containing disproportionately high (swine) and low (dairy) ash, P, and other elements were the least effective stabilizers. Regardless of the manure type, proton nuclear magnetic resonance analyses showed the removal of leachable aliphatic and nitrogen-containing heteroaromatic functional groups at the higher (700°C) pyrolysis temperature. Consistently greater Cu retention by the 700°C biochar indicated the mobilization of Cu by 350°C biochar-born dissolved organic carbon; however, the influence of other temperature-dependent biochar characteristics cannot be ruled out.  相似文献   

15.
《环境质量管理》2018,27(4):163-171
In order to examine the forms, sources, and pollution of heavy metals—arsenic (As), aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn)—in Daechung Lake, Korea, sediment samples were collected in November 2014. Daechung Lake was constructed to supply water for human consumption, agricultural use, and industrial use as well as to generate electric power. The lake is stratified in the summer and surrounded mostly by agricultural and mining areas. Our results indicate that the heavy metals (except As and Cd) displayed similar concentrations at all of the sampling stations. As and Cd were high in locations where fine sediments had built up. Based on the enrichment factor of the metals, the sediments collected from all of the sampling stations were highly polluted by As and Cd. Therefore, deposition of heavy metals in Daechung Lake is possibly controlled by grain size and anthropogenic activity, such as drainage from abandoned mines, agricultural activities, and/or the release of wastewater. The most dominant forms for all of the metals were oxide and silicate forms. This suggests that the sediments of Daechung Lake are not highly sulfidic. However, the sediment samples were collected after the collapse of seasonal stratification. Therefore, future studies should include elucidation of major sources for As and Cd and the collection of sediments during months of stratification.  相似文献   

16.
The characteristic levels of heavy metals (Cd, Cr, Cu, Pb, Ni and Zn) of soil profiles of automobile mechanic waste dumps were studied. The concentration of heavy metals decreased with the depth of the profile and lateral distance from the dumpsites. The levels found in this study exceeded background concentrations and limits for agricultural and residential purposes. The distribution pattern of heavy metals in the soil profiles were in the following order Pb > Zn > Cu > Cd > Ni > Cr. The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.  相似文献   

17.
A total of 260 surface soil samples were collected to investigate the spatial distribution of trace metals in Guangdong province, one of the fast developing regions in China. The results show that the upper baseline concentrations of Cu, Pb, Zn, Cd, Ni, Cr, and Hg were 28.7, 57.6, 77.8, 0.13, 23.5, 87.0, and 0.15 mg kg(-1), respectively. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace metals, and various anthropogenic activities are the second most important factors. The spatial distribution of trace metals is correlated to the geological characters with high concentrations of trace metals always located in regional fault areas, basins, and the Pearl River Delta alluvial plain and to the low concentrations associated with the other areas in Guangdong province.  相似文献   

18.
动电技术去除城市污泥中重金属的可行性探讨   总被引:3,自引:0,他引:3  
林小英  李玉林 《环境技术》2006,24(2):18-20,26
本文简要介绍了我国城市污泥的处理处置和利用现状及动电技术去除重金属的基本原理,分析动电技术处理土壤中重金属的国内外的试验研究和应用情况,对动电技术处理城市污泥中重金属的可行性进行探讨,认为动电技术去除城市污泥中的重金属具有可行性,并提出了今后研究的方向.  相似文献   

19.
An acidophilic, sulfur-oxidizing Acidithiobacillus thiooxidans MET bacterium was isolated from anaerobically digested, dewatered sewage sludge. This bacterium showed sulfur-oxidizing ability at both acidic and neutral conditions, and allowed metal leaching even at a high (130 g L(-1)) sludge solids concentration. We found that low metal leaching efficiency at high solids concentration was mainly due to an increase in buffering capacity resulting in retardation of pH reduction. Therefore, metal leaching was mainly influenced not by sludge solids concentration, but by the pH (or sulfate concentration per unit sludge mass) of the sludge solutions. The relationship between the pH of the sludge solution and the efficiency of metal leaching was obtained by quantitatively investigating the effect of pH reduction or the amount of sulfate produced per unit sludge mass on leaching of each metal. Furthermore, the relationship between total metal content in the sludge and metal leached to the solution was obtained for each metal. Such a relationship allowed estimation of leachable metal at various amounts of total metal content in sludge.  相似文献   

20.
Water utilities must assess risks and make decisions on safety measures in order to obtain a safe and sustainable drinking water supply. The World Health Organization emphasises preparation of water safety plans, in which risk ranking by means of risk matrices with discretised probability and consequence scales is commonly used. Risk ranking enables prioritisation of risks, but there is currently no common and structured way of performing uncertainty analysis and using risk ranking for evaluating and comparing water safety measures. To enable a proper prioritisation of safety measures and an efficient use of available resources for risk reduction, two alternative models linking risk ranking and multi-criteria decision analysis (MCDA) are presented and evaluated. The two models specifically enable uncertainty modelling in MCDA, and they differ in terms of how uncertainties in risk levels are considered. The need of formal handling of risk and uncertainty in MCDA is emphasised in the literature, and the suggested models provide innovations that are not dependent on the application domain. In the case study application presented here, possible safety measures are evaluated based on the benefit of estimated risk reduction, the cost of implementation and the probability of not achieving an acceptable risk level. Additional criteria such as environmental impact and consumer trust may also be included when applying the models. The case study shows how safety measures can be ranked based on preference scores or cost-effectiveness and how measures not reducing the risk enough can be identified and disqualified. Furthermore, the probability of each safety measure being ranked highest can be calculated. The two models provide a stepwise procedure for prioritising safety measures and enable a formalised handling of uncertainties in input data and results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号