首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

2.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

3.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

4.
Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.  相似文献   

5.
Reducing the delivery of phosphorus (P) from land-applied manure to surface water is a priority in many watersheds. Manure application rate can be controlled to manage the risk of water quality degradation. The objective of this study was to evaluate how application rate of liquid swine manure affects the transport of sediment and P in runoff. Liquid swine manure was land-applied and incorporated annually in the fall to runoff plots near Morris, Minnesota. Manure application rates were 0, 0.5, 1, and 2 times the rate recommended to supply P for a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Runoff volume, sediment, and P transport from snowmelt and rainfall were monitored for 3 yr. When manure was applied at the highest rate, runoff volume and sediment loss were less than the control plots without manure. Reductions in runoff volume and soil loss were not observed for spring runoff when frozen soil conditions controlled infiltration rates. The reduced runoff and sediment loss from manure amended soils compensated for addition of P, resulting in similar runoff losses of total P among manure application rates. However, losses of dissolved P increased with increasing manure application rate for runoff during the spring thaw period. Evaluation of water quality risks from fall-applied manure should contrast the potential P losses in snowmelt runoff with the potential that incorporated manure may reduce runoff and soil loss during the summer.  相似文献   

6.
7.
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.  相似文献   

8.
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.  相似文献   

9.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

10.
Substantial amounts of NO3 from agricultural crop production systems on poorly drained soils can be transported to surface water via subsurface drainage. A field study was conducted from the fall of 1993 through 2000 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of fall vs. spring application of N and nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments (fall N, fall N + NP, spring preplant N, and spring N + NP) were replicated four times and applied at 135 kg N ha(-1) for corn on individual drainage plots. Drainage occurred in all seven years. Seventy-one percent of the annual drainage and 75% of the annual NO3 loss occurred in April, May, and June. Fifty-four percent of the NO3 lost in the drainage occurred during the corn phase and 46% during the soybean phase. Annual flow-weighted NO3-N concentrations for the fall, fall + NP, spring, and spring + NP treatments averaged 14.3, 11.5, 10.7, and 11.3 mg L(-1) during the corn phase but annual NO3-N concentrations were still > or =10 mg L(-1) in three of six years for the spring preplant treatment. Averaged across the six rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > spring N + NP > fall N + NP > spring N. Under these conditions, NO3 losses in subsurface drainage from a corn-soybean rotation can be reduced 14% by spring N and 10% by late fall N + NP compared with fall-applied N. Nitrate losses were not appreciably reduced by adding NP to spring preplant N.  相似文献   

11.
Subsurface drainage, a water management practice used to remove excess water from poorly drained soils, can transport substantial amounts of NO3 from agricultural crop production systems to surface waters. A field study was conducted from the fall of 1986 through 1994 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of time of N application and use of nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments [fall N, fall N + NP, spring preplant N, and split N (40% preplant and 60% sidedress)] were replicated four times and applied at 150 kg N ha(-1) for corn on individual drainage plots. Sixty-two percent of the annual drainage and 69% of the annual NO3 loss occurred in April, May, and June. Flow-weighted NO3-N concentrations in the drainage water were two to three times greater in the two years following the three-year dry period compared with preceding and succeeding years. Nitrate N concentrations and losses in the drainage from corn were greatest for fall N with little difference among the other three N treatments. Nitrate losses from soybean were affected more by residual soil NO3 following corn than by the N treatments per se. Averaged across the four rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > split N > spring N = fall N + NP. Under these conditions NO3 losses from a corn-soybean rotation into subsurface drainage can be reduced by 13 to 18% by either applying N in the spring or using NP with late fall-applied ammonia.  相似文献   

12.
The risk of P loss from manured soils is more related to P fractions than total P concentration in manure. This study examined the impact of manure P fractions on P losses from liquid swine manure- (LSM), solid cattle manure- (SCM), and monoammonium phosphate- (MAP) treated soils. Manure or fertilizer was applied at 50 mg P kg soil, mixed, and incubated at 20°C for 6 wk to simulate the interaction between applied P and soil when P is applied well in advance of a high risk period for runoff. Phosphorus fractions in manure were determined using the modified Hedley fractionation scheme. We used simulated rainfall (75 mm h?1 for 1 h) to quantify P losses in runoff from two soils (sand and clay loam). The proportion of total labile P (total P in water+NaHCO fractions) in manure was significantly greater in LSM (70%) than SCM (44%). Mean dissolved reactive P (DRP) load in runoff over 60 min was greatest from MAP-treated soil (18.1 mg tray?1), followed by LSM- (14.0 mg tray?1) and SCM- (11.0 mg tray?1) treated soils, all of which were greater than mean DRP load from the check (5.2 mg tray?1). Total labile P (water+NaHCO) in manure was a more accurate predictor of runoff DRP loads than water extractable P, alone, for these two soils. Therefore, NaHCO extraction of manure P may be a useful tool for managing the risk of manure P runoff losses when manure is applied outside a high risk period for runoff loss.  相似文献   

13.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

14.
Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.  相似文献   

15.
Land application of manure is a common practice in the Upper Midwest of the United States. Recently, there have been concerns regarding the effect of this practice on water quality, especially when manure is applied during winter over frozen soils. A study undertaken on a Rozetta silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs) at Lancaster, WI, evaluated the effects of tillage and timing of manure application on surface and subsurface water quality. The daily scrape and haul liquid dairy manure was applied either in the fall (before snow) or in winter (over snow with frozen soil underneath) to be compared with no manure under two tillage systems (no-till and chisel-plowing). In this paper, we report results on the effects of the above treatments on mineral N leaching. Percolation and mineral N leaching during the nongrowing season were, respectively, 72 and 78% of the annual losses, mainly because of the absence of plant water and N uptake. Percolation was generally higher from no-till compared with chisel-plow but there was no significant effect of tillage on mineral N concentration of the leachate or mineral N losses via leaching. Mineral N leaching was statistically higher from the manure-applied vs. no-manure treatment, but there was no difference between winter-applied manure and no-manure treatments. There were significant tillage by manure interactions with fall manure application followed by chisel-plowing resulting in highest N leaching losses. Averaged over the two years, N leaching rates were 52, 38, and 28 kg N ha(-1) yr(-1) from fall-applied, winter-applied, and no-manure treatments, respectively. These results show that there is substantial N leaching from these soils even when no fertilizer or manure is applied. Furthermore, fall-applied manure followed by fall tillage significantly increases N leaching due to enhanced mineralization of both soil and manure organic N.  相似文献   

16.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   

17.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

18.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

19.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

20.
Addition of animal manure to soil can provide opportunity for Salmonella contamination of soil, water, and food. This study examined how exposure of hog manure-treated loamy sand and clay soils to different simulated seasonal temperature sequences influenced the length of Salmonella survival. A six-strain cocktail of Salmonella serovars (Agona, Hadar, Heidelberg, Montevideo, Oranienburg, and Typhimurium) was added to yield 5 log cfu/g directly to about 5 kg of the two soils and moisture adjusted to 60 or 80% of field capacity (FC). Similarly, the Salmonella cocktail was mixed with fresh manure slurry from a hog nursery barn and the latter added to the two soils at 25 g/kg to achieve 5 log cfu/g Salmonella. Manure was mixed either throughout the soil or with the top kilogram of soil and the entire soil volume was adjusted to 60 or 80% FC. Soil treatments were stored 180 d at temperature sequences representing winter to summer (-18, 4, 10, 25 degrees C), spring to summer (4, 10, 25, 30 degrees C), or summer to winter (25, 10, 4, -18 degrees C) seasonal periods with each temperature step lasting 45 d. Samples for Salmonella recovery by direct plating or enrichment were taken at 0, 7, and 15 d post-inoculation and thereafter at 15-d intervals to 180 d. Salmonella numbers decreased during application to soil and the largest decreases occurred within the first week. Higher soil moisture, manure addition, and storage in the clay soil increased Salmonella survival. Salmonella survived longest (> or = 180 d) in both soils during summer-winter exposure but was not isolated after 160 d from loamy sand soil exposed to other seasonal treatments. For all but one treatment decimal reduction time (DRT45d) values calculated from the first 45 d after application were < or = 30 d and suggested that a 30-d delay between field application of manure in the spring or fall and use of the land would provide reasonable assurance that crop and animal contamination by Salmonella would be minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号