首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of ground water modeling, chemical and dissolved gas analyses, and chlorofluorocarbon age dating of water was used to determine the relation between changes in agricultural practices, and NO3- concentrations in ground water of a glacial outwash aquifer in west-central Minnesota. The results revealed a redox zonation throughout the saturated zone with oxygen reduction occurring near the water table, NO3- reduction immediately below it, and then a large zone of ferric iron reduction, with a small area of sulfate (SO4(2-)) reduction and methanogenesis (CH4) near the end of the transsect. Analytical and NETPATH modeling results supported the hypothesis that organic carbon served as the electron donor for the redox reactions. Denitrification rates were quite small, 0.005 to 0.047 mmol NO3- yr(-1), and were limited by the small amounts of organic carbon, 0.01 to 1.45%. In spite of the organic carbon limitation, denitrification was virtually complete because residence time is sufficient to allow even slow processes to reach completion. Ground water sample ages showed that maximum residence times were on the order of 50 to 70 yr. Reconstructed NO3- concentrations, estimated from measured NO3- and dissolved N gas showed that NO3- concentrations have been increasing in the aquifer since the 1940s, and have been above the 714 micromol L(-1) maximum contaminant level at most sites since the mid- to late-1960s. This increase in NO3- has been accompanied by a corresponding increase in agricultural use of fertilizer, identified as the major source of NO3- to the aquifer.  相似文献   

2.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

3.
A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model 1 was constructed by evaluating 32 variables and selecting four primary predictor variables (delta 15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A delta 15N value of nitrate plus potassium > 18.2 indicated animal sources; a value < 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio > 575 indicated inorganic fertilizer on agricultural crops; a ratio < 575 indicated nitrate from golf courses. A sodium to potassium ratio > 3.2 indicated septic-system wastes; a ratio < 3.2 indicated spray or poultry wastes. A value for zinc > 2.8 indicated spray wastes from hog lagoons; a value < 2.8 indicated poultry wastes. Model 2 was devised by using all variables except delta 15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.  相似文献   

4.
Spatial analysis of land use impact on ground water nitrate concentrations   总被引:1,自引:0,他引:1  
In spatial analyses of causes or health effects of environmental pollutants, small units of analyses are usually preferred for internal environmental homogeneity reasons but can only be done when fine resolution data are available for most units. Objectives of this study were to determine which land use practices were spatially associated with ground water nitrate concentrations across Prince Edward Island (PEI), Canada, and which spatial aggregation is the preferred unit of analyses. Nitrate concentrations were determined for 4855 samples from private wells. Validated field-by-field land use data were available. Average nitrate concentration and percentage of area for the 14 major land use categories in PEI were determined for each of three spatial aggregations: watersheds based on topography and hydrology; freeform polygon boundaries based on similar neighboring nitrate concentrations; and 500-m buffer zones around each well. Results showed that the percentages of potato, grain, and hay coverage were positive predictors of ground water nitrate concentrations. Percentage of blueberry was a marginally significant negative predictor in the watershed and freeform polygon models, and percentage of residential coverage was a positive predictor in the freeform polygon and buffer zone models. Spatial autocorrelation was present in the freeform polygon and buffer zone models even after land use was taken into account. In conclusion, analyses based on watersheds produced the best predictive model with the percentages of land cover of potato, hay, and grain being significantly associated with ground water nitrate concentrations, and the percentages of blueberry, clear-cut woodland, and other agriculture being marginally significant.  相似文献   

5.
Ground water beneath the U.S. Department of Energy Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine). The USDOE Innovative Treatment and Remediation Demonstration (ITRD) program identified in situ oxidation by permanganate as a technology fit for further investigation. We evaluated the efficacy of KMnO(4) to transform and mineralize RDX by determining degradation kinetics and carbon mass balances using (14)C-RDX. Aqueous RDX solutions (2-5 mg L(-1)) and RDX-contaminated slurries (50% solids, w/v) were treated with KMnO(4) at 1000, 2000, 4000, and 20000 mg L(-1). Treating an aqueous RDX solution of 2.8 mg L(-1) with 20000 mg KMnO(4) L(-1) decreased RDX to 0.1 mg L(-1) within 11 d while cumulative mineralization proceeded for 14 d until 87% of the labeled carbon was trapped as (14)CO(2). Similar cumulative mineralization was obtained when Pantex aquifer material was included in the solution matrix. Other experiments using 4000 mg KMnO(4) L(-1) showed that initial RDX concentrations (1.3-10.4 mg L(-1)) or initial pH (4-11) had little effect on reaction rates. Attempts to identify RDX degradates and reaction products showed that N(2)O was a product of permanganate oxidation and constituted 20 to 30% of the N balance. Time-course measurements of a (14)C-RDX solution treated with KMnO(4) revealed few (14)C-labeled degradates but through liquid chromatography-mass spectrometry (LC-MS) analysis, we present evidence that 4-nitro-2,4-diaza-butanol is formed. Aquifer microcosm studies confirmed that the transformation products not mineralized by KMnO(4) were much more biodegradable than parent RDX. These results indicate permanganate can effectively transform and mineralize RDX in the presence of aquifer material and support its use as an in situ chemical oxidation treatment for the Pantex perched aquifer.  相似文献   

6.
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.  相似文献   

7.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.  相似文献   

8.
The objective of this work is to analyze and interpret the components or hydrogeological, physical, and chemical variables of the San Diego aquifer to describe it and explain its influence on the sustainable use of groundwater for the providing of this locality. The San Diego municipality covers most of the area of the aquifer and is an area of high urban development that currently needs the contribution of groundwater due to the deficit presented by the main supply from the Central Regional System. Said aquifer is a set of geological strata located within the limits of the San Diego River basin, in the state of Carabobo, which are capable of storing groundwater and transmitting it. Data on lithology, porosity, and pumping level were investigated, which allows calculating an estimate of the volume of water available in the aquifer. Regarding the quality of the water, the data on hardness, chlorides, sulfates, nitrates, conductivity, calcium, magnesium, and pH, show that the water towards the center and north of the aquifer is of good quality, being able to classify it as type 1A, while toward the southern end—this is of lower quality, where the mineral parameters are higher, which is related to the probable intrusion of brackish water from Lake Valencia. It is concluded by establishing that the volume of groundwater, its availability, extraction feasibility, and its quality, make it suitable for urban supply and that said extraction is sustainable. But a better-integrated type of management must be designed, considering the contribution of the Regional System of the Center and the adequacy of the distribution networks.  相似文献   

9.
The capacity of riparian soils to remove nitrate (NO3) from ground water is well established, but the effects of ground water NO3(-)-enrichment on C dynamics are not well studied. We incubated horizontal cores of aquifer material extracted from beneath moderately well-drained (MWD) and poorly drained (PD) soils in a riparian forest in Rhode Island, USA for 132 d, and dosed (flow rate, 170 mL d(-1); dissolved O2, 2 in PD and 5 mg L(-1) in MWD cores) with ground water amended with either Br-, Br(-)+ NO3- (10 mg N L(-1)), or Br(-) + NO3(-) + DOC (20 mg C L(-1)). The DOC was extracted from forest floor material and added during the first 56 d of the experiment. Addition of NO3- had limited effect on CO2 production while DOC amendment had a significant effect in the PD but not in the MWD mesocosms. Total CO2 production (mg CO2-C kg(-1) soil) was 6.3, 7.0, and 10.1 in the PD and 3.6, 4.0, and 4.5 in the MWD cores amended with Br-, Br(-) + NO3-, and Br(-) + NO3(-) + DOC, respectively. Carbon balance (C(bal) = DOC(in) - (DOC(out) + CO2-C) showed a net C retention of 8.0 mg C kg(-1) soil in the DOC-amended MWD cores (equivalent to 50% of the DOC added), and a net C loss of 8.3 mg C kg(-1) soil in similarly treated PD cores. The lack of C retention in the PD cores was ascribed to reductive dissolution of minerals implicated in DOC sorption. These findings underscore that there is marked variation in C dynamics in riparian aquifers that has the potential to influence the fate of NO3- and DOC in the landscape.  相似文献   

10.
This study applied hydrogeological characterization and isotope investigation to identify source locations and to trace a plume of ground water contaminated by nitrate. Most of the study site is agricultural fields with the remainder being residential. A poultry farm is also within the study area, so that potential point and nonpoint sources were present. Estimates of seasonal ground water recharge from irrigation and precipitation, leakage of sewage, and the regional ground water flow were linked to the seasonal changes in isotopic values. Ground water recharge largely occurred in spring and summer following precipitation or irrigation, depending on the locations. Natural and fertilized soils were identified as nonpoint sources of nitrate contamination in this area, while septic and animal wastes were identified as small point sources. The seasonal changes in the relative impact of these sources on ground water contamination were related to such factors as source distribution, the aquifer confining condition, precipitation rate, infiltration capacity, recharge rate, and the land use pattern.  相似文献   

11.
Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water.  相似文献   

12.
Ground water and aquifer samples from a site contaminated by hexachlorocyclohexanes (HCHs; C(6)H(6)Cl(6)) were exposed to nanoscale iron particles to evaluate the technology as a potential remediation method. The summed concentration of the HCH isomers in ground water was approximately 5.16 micromol L(-1) (1500 microg L(-1)). Batch experiments with 2.2 to 27.0 g L(-1) iron nanoparticles showed that more than 95% of the HCHs were removed from solution within 48 h. Using a pseudo first-order kinetics model, the HCH isomers were removed in accordance with the trend gamma congruent with alpha > beta > delta. This seems to be correlated with the orientation (axial vs. equatorial) of the chlorine atoms lost in the dihaloelimination steps. Although the reactivity of the HCH isomers has been investigated in the classical organic chemistry literature, the present study was the first in the environmental remediation arena. The rate of removal is directly correlated to the number of axial chlorines. The observed rate constant varied from 0.04 to 0.65 h(-1), and the rate constant normalized to the iron surface area concentration ranged from 5.4 x 10(-4) to 8.8 x 10(-4) L m(-2) h(-1). Post-test extractions of the reactor contents detected little HCH remaining in solution or on the iron surfaces, reinforcing the contention that reaction rather than sorption was the operative mechanism for the HCH removal. Together with previously published work on a wide variety of chlorinated organic solvents, this work further demonstrates the potential of zerovalent iron nanoparticles for treatment and remediation of persistent organic pollutants.  相似文献   

13.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

14.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

15.
The standard idea for deep saline aquifer sequestration is to separate carbon dioxide from a process stream, compress it, and inject it underground. However, since carbon dioxide is less dense than water, even at the high pressures found in aquifers, it is buoyant and will move towards the surface unless trapped by an impermeable seal. Also, significant energy expenditure is required to separate and compress carbon dioxide, even though neat carbon dioxide is not a desired product. These issues may be addressed by combining the idea of fast dissolution at the surface with supercritical water oxidation (SCWO). By burning coal at high pressure in supercritical water drawn from an aquifer, and then sequestering the entire pre-equilibrated effluent, all carbon from the fuel is captured, as well as all non-mineral coal combustion products including sulfur and metals.A possible block diagram of an SCWO-based electric power plant is proposed, including processes to handle salts from the aquifer brine and minerals from coal. The plant is thermodynamically modeled, using an indirectly fired combined cycle to convert energy from hot combustion products to work. This model estimates the overall thermal efficiency that can be achieved, and reveals unanticipated interactions within the plant that have significant effects on efficiency. The assumptions and results of the model highlight design challenges for an actual system.  相似文献   

16.
Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor ethane sulfonic acid [2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid] was present in most samples (63%) and was an indicator of past alachlor use.  相似文献   

17.
A shallow-depth ground water area was investigated to identify the dominant processes governing the distribution of hydrocarbon contaminants and hydrogeochemical parameters. The ground water in the study site has been highly contaminated with petroleum hydrocarbons. A preliminary pump-and-treatment remediation technology was applied for 4 yr at the site. Multivariate analyses were applied to hydrogeochemical data obtained before and after the rainy season. The pump-and-treatment application, indigenous biodegradation, and mixing by precipitation recharge are the major factors or events involved in the distribution of geochemical parameters of the ground water in the study area. Site-specific artificial pavement also played an important role in the evolution of the ground water chemistry. A conventional graphical analysis method (Piper plot) of major ions did not effectively reveal these effects. In this study, we demonstrate the usefulness of multivariate analysis (factor and cluster analyses) using biodegradation indicator parameters, as well as major cations and anions, for the study of the ground water system in the hydrocarbon-contaminated site.  相似文献   

18.
This paper used ordinary kriging to spatially map arsenic contamination in shallow aquifers of Northwestern Bangladesh (total area  35,000 km2). The Northwestern region was selected because it represents a relatively safer source of large-scale and affordable water supply for the rest of Bangladesh currently faced with extensive arsenic contamination in drinking water (such as the Southern regions). Hence, the work appropriately explored sustainability issues by building upon a previously published study (Hossain et al., 2007; Water Resources Management, vol. 21: 1245–1261) where a more general nation-wide assessment afforded by kriging was identified. The arsenic database for reference comprised the nation-wide survey (of 3534 drinking wells) completed in 1999 by the British Geological Survey (BGS) in collaboration with the Department of Public Health Engineering (DPHE) of Bangladesh. Randomly sampled networks of zones from this reference database were used to develop an empirical variogram and develop maps of zonal arsenic concentration for the Northwestern region. The remaining non-sampled zones from the reference database were used to assess the accuracy of the kriged maps. Two additional criteria were explored: (1) the ability of geostatistical interpolators such as kriging to extrapolate information on spatial structure of arsenic contamination beyond small-scale exploratory domains; (2) the impact of a priori knowledge of anisotropic variability on the effectiveness of geostatistically based management. On the average, the kriging method was found to have a 90% probability of successful prediction of safe zones according to the WHO safe limit of 10 ppb while for the Bangladesh safe limit of 50 ppb, the safe zone prediction probability was 97%. Compared to the previous study by Hossain et al. (2007) over the rest of the contaminated country side, the probability of successful detection of safe zones in the Northwest is observed to be about 25% higher. An a priori knowledge of anisotropy was found to have inconclusive impact on the effectiveness of kriging. It was, however, hypothesized that a preferential sampling strategy that honored anisotropy could be necessary to reach a more definitive conclusion in regards to this issue.  相似文献   

19.
To support EU policy, indicators of pesticide leaching at the European level are required. For this reason, a metamodel of the spatially distributed European pesticide leaching model EuroPEARL was developed. EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides. Physical parameters are depth dependent while (bio)-chemical parameters are depth, temperature, and moisture dependent. The metamodel is based on an analytical expression that describes the mass fraction of pesticide leached. The metamodel ignores vertical parameter variations and assumes steady flow. The calibration dataset was generated with EuroPEARL and consisted of approximately 60,000 simulations done for 56 pesticides with different half-lives and partitioning coefficients. The target variable was the 80th percentile of the annual average leaching concentration at 1-m depth from a time series of 20 yr. The metamodel explains over 90% of the variation of the original model with only four independent spatial attributes. These parameters are available in European soil and climate databases, so that the calibrated metamodel could be applied to generate maps of the predicted leaching concentration in the European Union. Maps generated with the metamodel showed a good similarity with the maps obtained with EuroPEARL, which was confirmed by means of quantitative performance indicators.  相似文献   

20.
A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号