首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.  相似文献   

2.
The photochemical degradation of herbicides belonging to different chemical groups has been investigated in different types of natural waters (ground, river, lake, marine) and distilled water as well as in soils with different texture and composition. Studied herbicides and chemical groups included atrazine, propazine, and prometryne (s-triazines); propachlor and propanil (acetanilides); and molinate (thiocarbamate). The degradation kinetics were monitored under natural conditions of sunlight and temperature. Photodegradation experiments were performed in May through July 1998 at low concentrations in water samples (2-10 mg/L) and soil samples (5-20 mg/kg), which are close to usual field dosage. The photodegradation rates of all studied herbicides in different natural waters followed a pseudo-first order kinetics. The half-lives of the selected herbicides varied from 26 to 73 calendar days in waters and from 12 to 40 d in soil surfaces, showing that the degradation process depends on the constitution of the irradiated media. The presence of humic substances in the lake, river, and marine water samples reduces degradation rates in comparison with the distilled and ground water. On the contrary, the degradation in soil is accelerated as the percentage of organic matter increases. Generally, the photodegradation process in soil is faster than in water. The major photodegradation products identified by using gas chromatography-mass spectrometry (GC-MS) techniques were the hydroxy and dealkylated derivatives for s-triazines, the dechlorinated and hydroxy derivative for the anilides, and the keto-derivative for the thiocarbamate, indicating a similar mode of degradation for each chemical category.  相似文献   

3.
 When Pseudomonas putida No. 69-3 cells, changed as an organic solvent-resistant variant from an organic solvent-sensitive parent, Pseudomonas putida No. 69, were cultivated with 0.01% surfactants, Triton X-100 provided the highest cell growth in the presence of 10% n-heptanol. When strain No. 69-3 was cultivated in a medium containing 10% n-heptanol and various concentrations of Triton X-100, 0.01% Triton X-100 gave the most improved cell growth. Hydrophobicity of the cell membrane did not change in the presence or absence of Triton X-100. However, when strain No. 69-3 was cultivated in a medium containing 0.01% Triton X-100 or without Triton X-100 and the culture broth was centrifuged at 500×g, the decrease in optical density of the supernatant was smaller when the cells were cultivated in a medium containing 0.01% Triton X-100 than when cultivated without Triton X-100. This result suggests that Triton X-100 decreased the degree of aggregation and improved growth. Received: 15 May 1998 / Accepted: 30 September 1998  相似文献   

4.
Phosphorus release from stream sediments into water could increase P loads leaving agricultural watersheds and contribute to lag-time between implementation of best management practices and improvement in water quality. Improved understanding of P release from stream sediments can assist in setting water quality goals and designing stream monitoring programs. The objective of this study was to estimate the relative potential of sediments and soils to release P to stream water in two agricultural watersheds. Stream sediments were collected from banks, pools, riffles, and depositional features. Soils were sampled from wheat, row crop, pasture, and manure-amended fields. Sediments and soils were analyzed for equilibrium P concentration at zero net P sorption (EPC0), maximum P adsorption capacity (P(max)), anion exchange extractable P (P(lab)), and degree of P saturation. Dissolved reactive P (DRP) of stream water was monitored. Stream sediment EPC0 was similar to or less than EPC0 from field soils; however, P(lab) of stream sediments was three times less than field soils. Sediments were sandy and had low P(max) due to low oxalate-extractable Fe and Al, which could be explained by stream geomorphology. Manure-amended fields had the highest EPC0 and P(lab) due to continued inputs of manure-based P; however, conventionally fertilized fields also represented an important P source due to their vast extent. Stream water DRP was similar to EPC0 of sediments during base flow and similar to EPC0 of field soils during storm flow. These results indicate that sediments in these streams are a relatively minor P source.  相似文献   

5.
The organic fraction of a municipal solid waste was added in different doses to an eroded soil formed of loam and with no vegetal cover. After three years, the changes in macronutrient content and the chemical-structural composition of its organic matter were studied. The addition of the organic fraction from a municipal solid waste had a positive effect on soil regeneration, the treated soils being covered with spontaneous vegetation from 1 yr onwards. An increase in electrical conductivity and a fall in pH were noted in the treated soils as were increases in macronutrients, particularly N and available P and the different carbon fractions. Optical density measurements of the organic matter extracted with sodium pyrophosphate showed that the treated soils contained an organic matter with less condensed compounds and with a greater tendency to evolve than the control. A pyrolysis-gas chromatography study of the organic matter extracted with pyrophosphate showed large quantities of benzene both in the treated soils and control; pyrrole was also relatively abundant, although this fragment decreased as the dose rose. Xylenes and pyridine were present in greater quantities in the control and furfural in the treated soils. Three years after addition to the soil, the organic matter had a higher proportion of fragments derived from aromatic compounds and a smaller proportion derived from hydrocarbons. Similarity indices showed that, although the added and newly formed organic matter 3 yr after addition continued to differ from that of the original soil and to be more mineralizable, the transformations it has undergone made it more similar to the original organic matter of the soil than it was at the moment of being added.  相似文献   

6.
Diet modification to decrease phosphorus (P) concentration in animal feeds and manures can reduce surpluses of manure P in areas of intensive animal production. We generated turkey and broiler litters from two and three flock trials, respectively, using diets that ranged from "high" to "low" in non-phytate phosphorus (NPP) and some of which contained feed additives such as phytase. Phosphorus forms in selected litters were analyzed by sequential chemical fractionation and solution (31)P nuclear magnetic resonance (NMR) spectroscopy. Selected litters were also incubated with four contrasting soils. Reducing dietary NPP and using phytase decreased total P in litters by up to 38%. Water-soluble phosphorus (WSP) in litters was decreased 21 to 44% by feeding NPP closer to animal requirement, but was not affected by phytase addition. Solution (31)P NMR spectroscopy showed that feeding NPP closer to requirement decreased orthophosphate in litters by an average of 38% and that adding phytase to feed did not increase the concentration of orthophosphate in litters. Phytase also decreased phytate P in litters by 25 to 38%, demonstrating that it increases phytate P hydrolysis. Incorporation of litters with soils at the same total P rate increased WSP in soils relative to the control; this increase was correlated to soluble P added with litters at 5 d, but not by 29 d. Changes in soil Mehlich-3 phosphorus (M3-P) were related to total P added in litter, rather than soluble P. We conclude that feeding NPP closer to requirement and using feed additives such as phytase decrease total P concentrations in litters, while having little effect on P solubility in litters and amended soils.  相似文献   

7.
The adsorption of chromate on mineral surfaces has received much attention due to its toxicity in natural systems. Spectroscopic studies have demonstrated that chromate forms inner-sphere complexes on variable-charge surfaces. However, in natural systems chromate has been observed to be fairly mobile, which has been explained by the presence of naturally occurring ligands competing with chromate for mineral surface sites. Silicic acid is a ubiquitous ligand in soil and water environments and also sorbs strongly to variable-charge surfaces. Yet little research has examined its influence on chromate adsorption to variable-charge surfaces such as goethite. This study examined the influence of silicic acid (0.10 and 1.0 mM) on the adsorption kinetics of chromate (0.05 and 0.10 mM) on goethite over a range of common soil pH values (4, 6, and 8). The rate and total quantity of chromate adsorption decreased in all the experiments except at a pH value of 4 and a chromate concentration of 0.05 mM. The inhibition of chromate adsorption ranged from 3.1% (pH = 4, Si = 0.10 mM, chromate = 0.10 mM) to 83.3% (pH = 8, Si = 1.0 mM, chromate = 0.05 mM). The rate of chromate adsorption decreased with an increase in pH and silicic acid concentration. This was attributed to a reduction in the surface potential of goethite on silicic acid adsorption as well as a competition for surface sites. The presence of naturally occurring ligands such as silicic acid may be responsible for the enhanced mobility of chromate in natural systems and demonstrates the importance of competitive adsorption for evaluating the mobility of trace elements.  相似文献   

8.
The intensive and abundant use of synthetic herbicides has been questioned in recent decades due to the strong dependence and also the resistance effects that are identified in weeds. Several grain crops suffer from the weed control system because many of the weeds are already resistant to the main herbicides that are used. In recent years, there has been a large gap in the market without the addition of new synthetic herbicides with mechanisms of action that differ from those already existing. The objective of this short piece is to address and overcome this challenge and bring an innovative and alternative solution that proposes a synergistic action system between bioherbicides produced by the fungus Trichoderma koningiopsis and synthetic herbicides (2,4‐dichlorophenoxyacetic acid, glyphosate, and ammonium glufosinate). The plants included in this study were Bidens pilosa (amor seco, or in the United States, beggar ticks or Spanish needle), Euphorbia heterophylla (adeus‐brasil), and Conyza bonariensis (margaridinha‐do‐campo, or, in the United States, hairy fleabane or asthmaweed). It was verified that, in the application of the biocomposites in the presence of chemical herbicides, potentiation of the phytotoxic action (100%) occurred under the target plants, emphasizing phytotoxicity to the weed, C. bonariensis, which is currently resistant to available herbicides. The bioherbicides studied have promising characteristics to be explored in the biocontrol of weeds.  相似文献   

9.
A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m × 0.8 m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9° slopes.  相似文献   

10.
Because organic sorption in soil may never reach equilibrium, a thin-disc flow nonequilibrium method may be helpful in understanding herbicide-soil interactions. This research was conducted to (i) determine the influence of incubation time on imazaquin [2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-3-quinolinecarboxylic acid] desorption from soil, (ii) examine the influence of solution flow velocities on desorption, and (iii) elucidate the most appropriate kinetic model to describe imazaquin leaching. Soil at 7.5% moisture w/w was treated with imazaquin and incubated for 24, 72, and 168 h. Treated soil was sealed in an in-line filter apparatus and rinsed with 5.0 mM CaCl2 at 0.33, 0.67, or 1.0 mL min(-1). Effluent was collected as 1.0-mL fractions for a total of 50 mL. Flow was stopped for 24 h. When flow resumed, fractions were collected for an additional 15 mL. After the initial desorption, 79% of the imazaquin incubated for 24 h was leached. Increasing incubation time beyond 24 h reduced imazaquin leaching. After both desorption events, 13% of the initially applied imazaquin remained in the soil incubated for 168 h, compared with 7% with soil incubated for 24 h. Elovich and Freundlich kinetics accounted for 98% of the variance observed in the imazaquin desorption curves. First-order and diffusion kinetics accounted for 91% of the variance. Incubating soil for 72 h before desorption reduced the rate of imazaquin desorption by approximately 12%, compared with the 24-h incubation treatment. Imazaquin desorption was not affected by wash solution flow rate. These data suggest that the kinetics of desorption in prolonged desorption events are limited by transport phenomena (i.e., particle and film diffusion).  相似文献   

11.
Fungi were isolated from soil samples corresponding to pesticide-contaminated soil (CS) and noncontaminated soil (NCS) in the Annaba vicinity (Algeria) and identified. The number of isolates obtained from CS and NCS were 263 and 288, respectively. The most frequent species (Aspergillus fumigatus, A. niger, A. terreus, Absidia corymbifera, and Rhizopus microsporus var microsporus) were not sensitive to the pesticides. The growth of the genus Trichoderma was inhibited by the pesticides, while genera Absidia and Fusarium were stimulated. The 53 species isolated were assayed for their ability to remove metribuzin from liquid medium. Only Botrytis cinerea from NCS and Sordaria superba and Absidia fusca from CS removed more than 50% of the compound after 5 d. Metamitron was very resistant. Among the 21 species tested, only Alternaria solani (from NCS), Drechslera australiensis (from CS and NCS), and Absidia fusca (from CS) reduced the concentration in the medium more than 10% (10-16%). Twelve species were grown with linuron, seven of them were inefficient in removing this compound. The two strains of Sordaria macrospora yielded 22 to 25% depletion, while Botrytis cinerea depleted linuron almost completely. Among the 31 species assayed for their ability to eliminate metobromuron, Botrytis cinerea (from CS and NCS) depleted almost completely the chemical from the medium. Rhizopus oryzae and Absidia fusca from CS removed 40 and 47% of the compound, respectively. No systematic relationships were observed between the soil contamination and herbicide elimination capacities of soil fungi. Absidia fusca and Botrytis cinerea were particularly interesting for bioremediation purposes because they were able to transform efficiently three of the four compounds assayed.  相似文献   

12.
利用强化混凝工艺对含聚采油废水进行深度处理。在以PFS作为主混凝剂,Potenflo1315和Potenflo1365作为助凝剂的强化混凝实验中,分别考察了pH值、PFS投加浓度以及有机助凝剂Potenflo1365和Potenflo1315的投加浓度对含聚采油废水的处理效果。实验结果表明:在pH值为5.0时,当投加浓度为150 mg/L的PFS与2.5 mg/L的Potenflo1365复配后,对含聚采油废水的处理效果最佳,COD_(Cr)去除率达到88.8%,浊度去除率达到98.1%,经处理后废水主要指标可以达到GB 8978—1996《污水综合排放标准》一级标准。  相似文献   

13.
Current phytotoxicity plant test protocols for US pesticide registration require testing for effects on seedling emergence and early growth without regard to other important factors, such as plant reproduction. Yield and quality reduction can have significant economic and ecological effects. Therefore, field trials were conducted to determine if potato (Solanum tubersum L.) vegetative growth and tuber yield and quality were affected by herbicides at below recommended field rates. Potatoes were grown in fields at the Oregon State University Horticulture Farm with herbicides applied at below recommended field application rates 14 d after emergence (DAE) or at 28 DAE. Plant height was measured before and 14 d after application. Visual foliar injury was rated 14 d after application, and tuber yield and quality parameters were measured at harvest (120 DAE). Some tubers were grown in the greenhouse the following year to determine if there were carry-over effects. Potato vegetation and tuber yield quality were generally more affected by herbicides applied at 14 DAE than at 28 DAE. Tuber yield and quality parameters were more affected by lower herbicide rates than were plant height or injury. There were significant yield losses caused by low rates of sulfometuron methyl and imazapyr and, to a lesser extent, with glyphosate and cloransulam-methyl. Bromoxynil and MCPA ((4-chloro-2-methylphenoxy)acetic) acid had little effect on the plants. Vegetative responses did not accurately predict yield and quality responses of tubers; therefore, reproductive responses should be considered in phytotoxicity test protocols for pesticide registration in the USA.  相似文献   

14.
The biosorption of different metals (Cu2+, Cd2+, Zn2+, Ni2+ and Pb2+) was investigated using activated sludge. The optimum pH was 4 for Cd, Cu and Pb sorption and 5 for Ni and Zn. Biomass metal uptake clearly competed with protons present in the aqueous medium, making pH an important variable in the process. Protons consumed by biomass in control tests versus protons exchange in biosorption tests confirmed a maximum exchange between metal cations and protons at pH 2. The study of the influence of biomass concentration revealed that the amount of protons released from biomass increased with biomass concentration. This would confirm the hypothesis of ion exchange between both types of ions. The application of the Langmuir and Freundlich models showed a better fitting of experimental data to the first model. The maximum sorption uptake of the studied metals by the activated sludge showed the following decreasing order: Pb>Cu>CdZn>Ni. Desorption experiments showed that HCl was a good eluent for the five metals tested, particularly at low pH values (1 and 2). At pH 3 or 4 the desorption yield was significantly lower. However, its use did not allow the reuse of biomass in subsequent loading and unloading cycles. EDTA was also a good desorption agent, achieving the total recovery for the five metals tested at a concentration of 1mM, with the advantage that biomass could be reused for three sorption-desorption cycles.  相似文献   

15.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

16.
The increased use of animal waste-derived effluents for irrigation could result in the enhanced movement of pesticides through complexation with dissolved organic materials. Batch equilibrium studies were conducted to measure the interaction among soil, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate], and dissolved organic matter (DOM) from poultry, swine, and cow waste-derived lagoon effluents. All DOM was found to have a strong affinity for chlorpyrifos, resulting in reduced sorption of chlorpyrifos by soil, thus the potential for DOM-enhanced mobility. Effluent DOM was observed to sorb to soils. Thus, for increasingly higher soil mass to solution volume ratios, the effect of chlorpyrifos association with water-borne DOM on sorption decreases significantly. For high soil mass to solution volume ratios typical of soil profiles in the landscape, the potential for DOM-enhanced transport will be greatly attenuated. Dissolved organic matter concentration and the nonpolar nature of DOM in the lagoon effluent decreased with increasing residence time in the cells of the lagoon system, thus reducing the potential for DOM-enhanced transport.  相似文献   

17.
18.
Interactions of hydrophobic organic compounds (HOCs) with soil organic matter (SOM) determine their combination state in soils, and therefore strongly influence their mobility, bioavailability, and chemical reactivity. Contact time (aging) of an HOC in soil also strongly influences its combination state and environmental fate. We studied Fenton oxidation of pyrene in three different soils to reveal the influences of SOM, contact time, and combination state on the efficiency of vigorous chemical reactions. Pyrene degradation efficiency depended strongly on the dose of oxidant (H(2)O(2)) and catalyst (Fe(2+)); the greatest degradation was achieved at an oxidant to catalyst molar ratio of 10:1. Pyrene degradation differed among the three soils, ranging from 65.4% to 88.9%. Pyrene degradation efficiency decreased with increasing SOM content, and the aromatic carbon content in SOM was the key parameter. We hypothesize that pyrene molecules that combine with the compact net structure of aromatic SOM are less accessible to Fenton oxidation. Furthermore, pyrene degradation efficiency decreased considerably after aged for 30 days, but further aging to 60 and 180 days did not significantly change degradation efficiency. The Fenton oxidation efficiency of pyrene in both unaged and aged soils was greater than the corresponding desorption rate during the same period, perhaps because Fenton reaction can make pyrene more accessible to the oxidant through the enhancement of HOCs' desorption by generating reductant species or by destroying SOM through oxidation.  相似文献   

19.
To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments.  相似文献   

20.
Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号