首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of immiscible-liquid constituents in cases wherein grain/pore-scale heterogeneity significantly influences both dissolution and sorption/desorption.  相似文献   

2.
A series of miscible-displacement experiments was conducted to examine the impact of sorption contact time on desorption and elution of trichloroethene from a well-characterized soil. A large number of contact times were examined, spanning 1 h to 4 years (∼2 × 106 h). Effluent trichloroethene concentrations were monitored over a range of greater than six orders of magnitude, allowing characterization of potential asymptotic tailing. The results of the column experiments showed that trichloroethene exhibited extensive elution tailing for all experiments. Each increase in contact time resulted in a successive increase in the extent of tailing. In total, the number of pore volumes of water flushing required to reach the analytical detection limit increased from approximately 1000 for the 1-h contact time to almost 9000 for the 4-year contact time. These results indicate that a contact time of less than 1 h produced a sorbed phase that is relatively resistant to desorption, and that a progressive increase in resistance to desorption occurred with increased contact time. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution reaction function was used to successfully simulate the measured data. The nonlinear sorption, the apparent rapid development of desorption resistance, and the progressive increase in resistance with increasing contact time are consistent with behavior anticipated for sorbate interactions with hard-carbon components of the soil.  相似文献   

3.
Numerical simulations of colloid transport in discretely fractured porous media were performed to investigate the importance of matrix diffusion of colloids as well as the filtration and remobilization of colloidal particles in both the fractures and porous matrix. To achieve this objective a finite element numerical code entitled COLDIFF was developed. The processes that COLDIFF takes into account include advective-dispersive transport of colloids, filtration and remobilization of colloidal particles in both fractures and porous matrix, and diffusive interactions of colloids between the fractures and porous matrix. Three sets of simulations were conducted to examine the importance of parameters and processes controlling colloid migration. First, a sensitivity analysis was performed using a porous block containing a single fracture to determine the relative importance of various phenomenological coefficients on colloid transport. The primary result of the analysis showed that the porosity of the matrix and the process of colloid filtration in fractures play important roles in controlling colloid migration. Second, simulations were performed to replicate and examine the results of a laboratory column study using a fractured shale saprolite. Results of this analysis showed that the filtration of colloidal particles in the porous matrix can greatly affect the tailing of colloid concentrations after the colloid source was removed. Finally, field-scale simulations were performed to examine the effect of matrix porosity, fracture filtration and fracture remobilization on long-term colloid concentration and migration distance. The field scale simulations indicated that matrix diffusion and fracture filtration can significantly reduce colloid migration distance. Results of all three analyses indicated that in environments where porosity is relatively high and colloidal particles are small enough to diffuse out of fractures, the characteristics of the porous matrix that affect colloid transport become more important than those of the fracture network. Because the properties of the fracture network tend to have greater uncertainty due to difficulties in their measurement relative to those of the porous matrix, prediction uncertainties associated with colloid transport in discretely fractured porous media may be reduced.  相似文献   

4.
The migration of Dense, Non-Aqueous Phase Liquid (DNAPL) and dissolved phase contamination through a fractured heterogeneous porous medium has been investigated through the use of a multiphase compositional model. The sensitivity of the timescales of migration and the distribution of contaminant in the subsurface to the mean permeability, the variance of the permeability, and the degree of fracturing of the domain were examined. It was found that increasing the mean permeability of the domain allowed the DNAPL to penetrate deeper into the subsurface, while decreasing the mean permeability caused the DNAPL to pool at shallower depths. The presence of fractures within the system was found to control the infiltration only in the most fractured domain. Moment analysis of the nonwetting phase showed that large-scale movement had ceased after approximately 9 years (maximum duration of the source-on condition was approximately 4.5 years). This tended to be due to a redistribution of the DNAPL towards a residual configuration, as was evidenced by the gradual trending of average nonwetting phase saturations within the domain to a static value. The dissolved phase plume was found to migrate at essentially the same rate as the nonwetting phase, due to the reduced relative permeability of lenses containing DNAPL, and due to diffusive losses of mass to the matrix of fractured clay and silty-clay lenses. Some exceptions to this were found when the DNAPL could not overcome the displacement pressure of a lens, and could not by-pass the lens due to the lack of available driving force after the source had been shut off.  相似文献   

5.
Stable colloidal particles can travel long distances in subsurface environments and carry particle-reactive contaminants with them to locations further than predicted by the conventional advective-dispersive transport equation. When such carriers exist in a saturated porous medium, the system can be idealized as consisting of three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. However, when colloids are present in an unsaturated porous medium, the system representation should include one more phase, i.e. the air phase. In the work reported, a mathematical model was developed to describe the transport and fate of the colloidal particles and a non-volatile contaminant in unsaturated porous media. The model is based on mass balance equations in a four-phase porous medium. Colloid mass transfer mechanisms among aqueous, solid matrix, and air phases, and contaminant mass transfer between aqueous and colloid phases are represented by kinetic expressions. Governing equations are non-dimensionalized and solved to investigate colloid and contaminant transport in an unsaturated porous medium. A sensitivity analysis of the transport model was utilized to assess the effects of several parameters on model behavior. The colloid transport model matches successfully with experimental data of Wan and Wilson. The presence of air-water interface retards the colloid transport significantly counterbalancing the facilitating effect of colloids. However, the retardation of contaminant transport by colloids is highly dependent on the properties of the contaminant and the colloidal surface.  相似文献   

6.
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.  相似文献   

7.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.  相似文献   

8.
A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.  相似文献   

9.
A proposed tracer diffusion test for the Exploratory Shaft Facility at Yucca Mountain, NV, is modeled. For the proposed test, a solution containing conservative tracers will be introduced into a borehole in the geologic medium of interest. The tracers will diffuse and advect from the saturated source region into the unsaturated matrix in the surrounding tuff. After some time, the borehole is to be overcored, and tracer concentrations in the fluid will be measured in the core as a function of distance from emplacement. The data will be used to evaluate diffusive behavior and to derive effective diffusion coefficients for the tracers in the specific tuff. Numerical simulations are used to study the effects of effective diffusion coefficient, porosity, saturation, and fracturing on tracer transport. Results are reported for numerical simulations of tests in the Topopah Spring Member and the Tuff of Calico Hills, which have significantly different porosities and saturations. The simulations make the following predictions: The spread of tracer during the test will be sensitive to the effective diffusion coefficient of the tracer. Tracer will diffuse farther in the Topopah Spring Member than in the Tuff of Calico Hills because of the former's lower porosity and saturation. Tracer transport by advection into the Topopah Spring Member will be greater than that into the Tuff of Calico Hills because of capillary effects. While advection will be a significant mechanism for tracer penetration into the Topopah Spring tuff, it will be less significant for tracer penetration into the Calico Hills tuff. The proximity of a single vertical fracture to the source region determines its effects on tracer transport, especially if the fracture diverts fluid flowing from the source region into the matrix.  相似文献   

10.
A one-dimensional transport model for simulating water flow and solute transport in homogeneous–heterogeneous, saturated–unsaturated porous media is presented. The model is composed of a combination of accurate numerical algorithms for solving the nonlinear Richard's and advection–dispersion equations (ADE). The mixed form of Richard's equation is solved using a standard finite element method (FEM) with primary variable switching. The transport equation is solved using operator splitting, with the discontinuous finite element method (DFE) for discretization of the advective term. A slope limiting procedure for DFE avoids numerical instabilities but creates very limited numerical dispersion for high Peclet numbers. An implicit finite differences scheme (FD) is used for the dispersive term.The unsaturated flow and transport model (Wamos-T) is applied to a variety of rigorous problems including transient flow, heterogeneous medium and abrupt variations of velocity in magnitude and direction due to time-varying boundary conditions. It produces accurate and mass-conservative solutions for a very large range of grid Peclet numbers. The Wamos-T model is a good and robust alternative for the simulation of mass transport in unsaturated domain.  相似文献   

11.
Contaminant breakthrough behavior in a variety of heterogeneous porous media was measured in laboratory experiments, and evaluated in terms of both the classical advection-dispersion equation (ADE) and the continuous time random walk (CTRW) framework. Heterogeneity can give rise to non-Fickian transport patterns, which are distinguished by "anomalous" early arrival and late time tails in breakthrough curves. Experiments were conducted in two mid-scale laboratory flow cells packed with clean, sieved sand of specified grain sizes. Three sets of experiments were performed, using a "homogeneous" packing, a randomly heterogeneous packing using sand of two grain sizes, and an exponentially correlated structure using sand of three grain sizes. Concentrations of sodium chloride tracer were monitored at the inflow reservoir and measured at the outflow reservoir. Breakthrough curves were then analyzed by comparison to fitted solutions from the ADE and CTRW formulations. In all three systems, including the "homogeneous" one, subtle yet measurable differences between Fickian and non-Fickian transport were observed. Quantitative analysis demonstrated that the CTRW theory characterized the full shape of the breakthrough curves far more effectively than the ADE.  相似文献   

12.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   

13.
A two-dimensional flow and transport model was developed for simulating transient water flow and nonreactive solute transport in heterogeneous, unsaturated porous media containing air and water. The model is composed of a unique combination of robust and accurate numerical algorithms for solving the Richards', Darcy flux, and advection-dispersion equations. The mixed form of Richards' equation is solved using a finite-element formulation and a modified Picard iteration scheme. Mass lumping is employed to improve solution convergence and stability behavior. The flow algorithm accounts for hysteresis in the pressure head-water content relationship. Darcy fluxes are approximated with a Galerkin and Petrov-Galerkin finite-element method developed for random heterogeneous porous media. The transport equation is solved using an Eulerian-Lagrangian method. A multi-step, fourth-order Runge-Kutta, reverse particle tracking technique and a quadratic-linear interpolation scheme are shown to be superior for determining the advective concentration. A Galerkin finite-element method is used for approximating the dispersive flux. The unsaturated flow and transport model was applied to a variety of rigorous problems and was found to produce accurate, mass-conserving solutions when compared to analytical solutions and published numerical results.  相似文献   

14.
The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus providing guidelines in performing this technology on site.  相似文献   

15.
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   

16.
《Chemosphere》2013,90(11):1302-1306
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   

17.
Naturally occurring nanoparticles (NP) enhance the transport of hydrophobic organic contaminants (HOCs) in porous media. In addition, the debate on the environmental impact of engineered nanoparticles (ENP) has become increasingly important. HOC bind strongly to carbonaceous ENP. Thus, carbonaceous ENP may also act as carriers for contaminant transport and might be important when compared to existing transport processes. ENP bound transport is strongly linked to the sorption behavior, and other carbonaceous ENP-specific properties. In our analysis the HOC-ENP sorption mechanism, as well as ENP size and ENP residence time, was of major importance. Our results show that depending on ENP size, sorption kinetics and residence time in the system, the ENP bound transport can be estimated either as (1) negligible, (2) enhancing contaminant transport, or (3) should be assessed by reactive transport modeling. One major challenge to this field is the current lack of data for HOC-ENP desorption kinetics.  相似文献   

18.
The effect of a biofilm on solute diffusion in fractured porous media   总被引:1,自引:0,他引:1  
At sites in fractured rock where contamination has been exposed to the rock matrix for extended periods of time, the amount of contaminant mass residing in the matrix can be considerable. Even though it may be possible to diminish concentrations by the advection of clean water through the fracture features, back diffusion from mass held in the matrix will lead to a continuing source of contamination. In such an event, the development of a biofilm (a thin film of microbial mass) on the wall of the fractures may act to limit or prevent the back diffusion process. The objective of this preliminary study is to explore the influence imparted by the presence of a biofilm on the process of matrix diffusion. The investigation was conducted using radial diffusion cells constructed from rock core in which biofilm growth was stimulated in a central reservoir. Once biofilms were developed, forward diffusion experiments were conducted in which a conservative solute migrated from the central reservoir into the intact rock sample. Diffusion experiments were performed in a total of 11 diffusion cell pairs where biofilm growth was stimulated in one member of the pair and inhibited in the other. The effect of the presence of a biofilm on tracer diffusion was determined by comparison of the diffusion curves produced by each cell pair. A semi-analytical model that accounts for the presence of a biofilm was used to investigate the effect of the biofilm on mass transfer due to changes in the effective porosity, effective diffusion coefficient, and the depth of penetration of the biofilm into the intact rock. The results show that the biofilm acted to plug the rock matrix, rather than forming a discrete layer on the reservoir surface. The reduction in effective porosity due to the biofilm ranged from 6% to 52% with the majority of the samples in the 30% to 50% range. Based on the present results, with more efficient biofilm stimulation, it is reasonable to assume that a more complete plugging of the microcrack porosity might be possible, leaving a much thicker and efficient barrier than could be achieved via a surface biofilm.  相似文献   

19.
Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming trapped.  相似文献   

20.
In riverbank filtration, contaminant transport is affected by colloidal particles such as dissolved organic matter (DOM) and bacterial particles. In addition, the subsurface heterogeneity influences the behavior of contaminant transport in riverbank filtration. A mathematical model is developed to describe the contaminant transport in dual-porosity media in the presence of DOM and bacteria as mobile colloids. In the model development, a porous medium is divided into the mobile and immobile regions to consider the presence of ineffective micropores in physically heterogeneous riverbanks. We assume that the contaminant transport in the mobile region is controlled by the advection and dispersion while the contaminant transport in the immobile region occurs due to the molecular diffusion. The contaminant transfer between the mobile and immobile regions takes place by diffusive mass transfer. The mobile region is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a solid matrix. The complete set of governing equations is solved numerically with a fully implicit finite difference method. The model results show that in riverbank filtration, the contaminant can migrate further than expected due to the presence of DOM and bacteria. In addition, the contaminant mobility increases further in the presence of the immobile region in aquifers. A sensitivity analysis shows that in dual-porosity media, earlier breakthrough of the contaminant takes place as the volumetric fraction of the mobile region decreases. It is also demonstrated that as the contaminant mass transfer rate coefficient between the mobile and immobile regions increases, the contaminant concentration gradient between the two regions reverses at earlier pore volumes. The contaminant mass transfer coefficient between the mobile and immobile regions mainly controls the tailing effect of the contaminant breakthrough. The contaminant breakthrough curves are sensitive to changes in contaminant adsorption and desorption rate coefficients on DOM and bacteria. In situations where the contaminant is released in the presence of DOM and bacteria in dual-porosity media, the early breakthrough and tailing occur due to the colloidal facilitation and presence of immobile regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号