首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large 20‐year database on water clarity for all Minnesota lakes ≥8 ha was analyzed statistically for spatial distributions, temporal trends, and relationships with in‐lake and watershed factors that potentially affect lake clarity. The database includes Landsat‐based water clarity estimates expressed in terms of Secchi depth (SDLandsat), an integrative measure of water quality, for more than 10,500 lakes for time periods centered around 1985, 1990, 1995, 2000, and 2005. Minnesota lake clarity is lower (more turbid) in the south and southwest and clearer in the north and northeast; this pattern is evident at the levels of individual lakes and ecoregions. Temporal trends in clarity were detected in ~11% of the lakes: 4.6% had improving clarity and 6.2% had decreasing clarity. Ecoregions in southern and western Minnesota, where agriculture is the predominant land use, had higher percentages of lakes with decreasing clarity than the rest of the state, and small and shallow lakes had higher percentages of decreasing clarity trends than large and deep lakes. The mean SDLandsat statewide remained stable from 1985 to 2005 but decreased in ecoregions dominated by agricultural land use. Deep lakes had higher clarity than shallow lakes statewide and for lakes grouped by land cover. SDLandsat decreased as the percentage of agriculture and/or urban area increased at county and catchment levels and it increased with increasing forested land.  相似文献   

2.
Abstract: Lakes are important water resources on the North Slope of Alaska. Freshwater is required for oilfield production as well as exploration, which occurs largely on ice roads and pads. Since most North Slope lakes are shallow, the quantity and quality of the water under ice at the end of winter are important environmental management issues. Currently, water‐use permits are a function of the presence of overwintering fish populations, and their sensitivity to low oxygen concentrations. Sampling of five North Slope lakes during the winter of 2004‐2005 shed some light on the winter chemistry of four lakes that were used as water supplies and one undisturbed lake. Field analysis was conducted for oxygen, conductivity, pH, and temperature throughout the lake depth, as well as ice thickness and water depth. Water samples were retrieved from the lakes and analyzed for Na, Ca, K, Mg, Fe, dissolved‐organic carbon, and alkalinity in the laboratory. Lake properties, rather than pumping, were the best predictors of oxygen depletion, with the highest dissolved‐oxygen levels maintained in the lake with the lowest concentration of constituents. Volume weighted mean dissolved‐oxygen concentrations ranged from 4 to 94% of saturation in March. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May.  相似文献   

3.
ABSTRACT: Federal agencies in the U.S. and Canada continuously examine methods to improve understanding and forecasting of Great Lakes water level dynamics in an effort to reduce the negative impacts of fluctuating levels incurred by interests using the lakes. The short term, seasonal and long term water level dynamics of lakes Erie and Ontario are discussed. Multiplicative, seasonal ARIMA models are developed for lakes Erie and Ontario using standardized, monthly mean level data for the period 1900 to 1986. The most appropriate model identified for each lake had the general form: (1 0 1)(0 1 1)12. The data for each lake were subdivided by time periods (1900 to 1942;1 943 to 1986) and the model coefficients estimated for the subdivided data were similar, indicating general model stability for the entire period of record. The models estimated for the full data sets were used to forecast levels 1,2,3, and 6 months ahead for a period of high levels (1984 to 1986). The average absolute forecast error for Lake Erie was 0.049m, 0.076m, 0.091 m and 0.128m for the 1, 2,3, and 6 month forecasts, respectively. The average absolute forecast error for Lake Ontario was 0.058m, 0.095m, 0.120m and 0.136m for the 1,2,3, and 6 month forecasts, respectively. The ARIMA models provide additional information on water level time series structure and dynamics. The models also could be coordinated with current forecasting methods, possibly improving forecasting accuracy.  相似文献   

4.
Abstract: We examined the chemical, morphological, and anthropogenic controls on winter‐oxygen biogeochemistry in ice‐covered lakes and reservoirs on the North Slope of Alaska. We measured dissolved oxygen (DO), solute concentrations, water depth, and ice thickness at three natural thaw lakes and four reservoirs (flooded gravel mines) for two winters. In all seven study sites, DO concentration and pH decreased with depth, and temporally through the winter (November to April). DO concentration was four to six times greater in the deeper reservoirs (8‐13 mg/l) compared with shallow natural lakes (ca. 2 mg/l). Lakes and reservoirs with high dissolved organic carbon (DOC) concentration were susceptible to large decreases in oxygen over the winter. DO concentration differed markedly between years, but was not attributed to changes in water‐use or winter water‐chemistry. Alternatively, we suggest that dissolved oxygen concentration was lower during freeze‐up, possibly associated with higher lake‐productivity during the summer. Our results suggest that current water‐use practices on the North Slope of Alaska caused little to no change in DO concentration over the winter. In particular, considering the high pumping activity and shallow depth, lakes with low DOC concentration (≤6 mg/l) showed strong resilience to change in chemistry over the winter. We suggest that both lake and reservoir depth, and DOC concentration are key factors influencing oxygen consumption in ice‐covered arctic lakes and reservoirs.  相似文献   

5.
ABSTRACT: Man-made lakes have significant impacts on the hydrologic conditions in the watershed in which they are built. This paper examines the nature of the impact upon baseflow by comparing baseflow conditions at the outlet of the lakes with those elsewhere in the watershed. Situated in the upper reaches of a small watershed, the lakes studied have only a minor effect upon the magnitude of baseflow discharge, increasing it slightly from October to January, and decreasing it from May to September. Baseflow quality is substantially affected. Natural dissolved ions, as represented by magnesium, are generally decreased in concentration and total load by the lakes. Road salt related inons are substantially increased in both concentration and total load in the baseflow. Surface runoff stored in the lakes is extremely enriched in salt in the winter, and the storage capacity of the lakes is sufficient to maintain winter salt concentrations in the baseflow near the lakes until summer. The storage effect also tends to damp out seasonal fluctuations in baseflow chloride content which are extreme in suburban watersheds. The difference in quality between the lake and non-lake baseflows and the linear distance needed for complete mixing are used as measures of the magnitude and distal extent of the lake effect on baseflow quality.  相似文献   

6.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   

7.
Economic evaluations of restored or enhanced lakes in Florida indicated gravity drawdown was the least expensive action, whereas effluent diversion was 10,000 times more costly on a per hectare basis, with the other lake treatment costs occurring in the following order: gravity drawdown < grass carp introduction < mechanical drawdown < aeration < stormwater control = drawdown-dredging < effluent diversion. Within a particular treatment category, the costs spanned approximately one and one half orders of magnitude. Contrary to the abundant cost data, which permitted an economic analysis, inappropriate statistical design and lack of commitment toward sampling Florida's restored lakes undermines attempts to understand long-term water quality responses to various enhancement techniques. Using Lake Tohopekaliga as a case study, ordinary statistical tests produced contradictory and unreliable interpretations on the effectiveness of drawdown and phosphorus removal at sewage treatment plants in improving the trophic state index. This emphasizes the need for more robust statistical approaches and more detailed data collection in evaluating lake restoration activities It is unfortunate for Florida's lake restoration program that quantitative conclusions based on inferential statistics, replete with tests of assumptions, is limited to very few lakes  相似文献   

8.
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

9.
Inland water bodies are considered as integrated parts of the landscape and the monitoring of water quality and aquatic resources need to be addressed on a regional basis for optimal assessment and management. In this study, a simple stratified sampling scheme was applied to a mesoscale survey of western and northwestern Irish lakes, which was carried out to identify, based on the distribution patterns of phytoplankton biomass, potential associations between lake trophic state and land cover attributes. Phytoplankton community analysis was also performed to determine whether taxa associations reflected meteorology-linked aestival succession or specific spatial distributions. The assessment was based on the typology of hydrogeomorphological and land cover attributes of river catchments through ArcGIS analysis. Sampling was carried out in 50 lakes and during a 15-week period in summer 2009. Results showed a general longitudinal gradient in the trophic status of the lakes sampled, with a greater frequency of mesotrophic lakes in the eastern part of the study area where land cover is dominated by agricultural surfaces. Significant relationships (p < 0.010) were found between chlorophyll-a concentration and the proportion of river catchment surface covered by agriculture land and wetlands, findings which might be considered further as proxies for developing an eutrophication risk index. Multivariate analysis of phytoplankton community data clustered the sampled lakes into three assemblages, with ordination along axis 1 being significantly correlated to time and temperature (p < 0.006). There was greater frequency of occurrence of diatoms in lakes from cluster III (Kruskal–Wallis, p < 0.05, H = 6.34, df = 2, n = 49), concomitant to lower chlorophyll-a concentrations, lake surface temperatures and Secchi depths, reflecting meteorological conditions dominated by precipitations. Those results support the potential of mesoscale surveys to assess water quality variables and detect environmental patterns at regional scales.  相似文献   

10.
为评价西南地区高尔夫球场人工湖的营养状态,并探讨影响球场湖泊富营养化的原因,2010年1月至12月,以成都麓山高尔夫球场为例,对球场的4个球道人工湖(12号球道、13号球道、14号球道和16号球道)水体的水体理化性质进行监测。结果显示:人工湖的富营养化程度呈季节性变化,其在试验期内综合营养状态已达到轻度富营养的状态。水体营养盐主要来自于球场草坪的施肥,氮、磷等营养物质随降水输入人工湖,从而引起的湖泊富营养化,尤其体现在多雨的夏季。  相似文献   

11.
Assessment of lake impairment status and identification of threats’ type and source is essential for protection of intact, enhancement of modified, and restoration of impaired lakes. For regions in which large numbers of lakes occur, such assessment has usually been done for only small fractions of lakes due to resource and time limitation. This study describes a process for assessing lake impairment status and identifying which human disturbances have the greatest impact on each lake for all lakes that are 2 ha or larger in the state of Michigan using readily available, georeferenced natural and human disturbance databases. In-lake indicators of impairment are available for only a small subset of lakes in Michigan. Using statistical relationships between the in-lake indicators and landscape natural and human-induced measures from the subset lakes, we assessed the likely human impairment condition of lakes for which in-lake indicator data were unavailable using landscape natural and human disturbance measures. Approximately 92% of lakes in Michigan were identified as being least to marginally impacted and about 8% were moderately to heavily impacted by landscape human disturbances. Among lakes that were heavily impacted, more inline lakes (92%) were impacted by human disturbances than disconnected (6%) or headwater lakes (2%). More small lakes were impacted than medium to large lakes. For inline lakes, 90% of the heavily impacted lakes were less than 40 ha, 10% were between 40 and 405 ha, and 1% was greater than 405 ha. For disconnected and headwater lakes, all of the heavily impacted lakes were less than 40 ha. Among the anthropogenic disturbances that contributed the most to lake disturbance index scores, nutrient yields and farm animal density affected the highest number of lakes, agricultural land use affected a moderate number of lakes, and point-source pollution and road measures affected least number of lakes. Our process for assessing lake condition represents a significant advantage over other routinely used methods. It permits the evaluation of lake condition across large regions and yields an overall disturbance index that is a physicochemical and biological indicator weighted sum of multiple disturbance factors. The robustness of our approach can be improved with increased availability of high-resolution disturbance datasets.  相似文献   

12.
Abstract: Many arctic lakes freeze completely in winter. The few that retain unfrozen water for the entire winter period serve as overwintering fish habitat. In addition to serving as fish habitat, water in arctic lakes is needed for industrial and domestic use. Permits for water extraction seek to maximize water use without impacting dissolved oxygen (DO) levels and endangering fish habitat. The relationship between lake volume, winter DO budget, and extraction of water through pumping has historically not been well understood. A management model that could estimate end‐of‐winter DO would improve our understanding of the potential impacts of different management strategies. Using under‐ice DO measurements (November to April) taken from two natural lakes and one flooded gravel mine on the North Slope of Alaska, a physically based model was developed to predict end‐of‐winter DO concentration, water‐column DO profiles, and winter oxygen depletion rate in arctic lakes during periods of ice cover. Comparisons between the measured and model‐predicted oxygen profiles in the three study lakes suggest that the depth‐based DO modeling tool presented herein can be used to adequately predict the amount of DO available in arctic lakes throughout winter.  相似文献   

13.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   

14.
Two northern Minnesota lakes that had been studied in detail 22 years earlier (1958) were restudied to determine the extent of alteration in ecological conditions. Approximately one year after the original investigation, a coal-fired power plant, which incremented sulfate loading by about 6 kg/ha-yr, began operation nine miles away. These lakes lie within a region judged susceptible to acidic precipitation, though each lake, based on its buffering capacity, would be judged only moderately sensitive. In spite of the influence of this plant and other anthropogenic inputs, the change in lake ecology was apparently minimal. Water clarity decreased in both lakes and some alteration in zooplankton community structure was observed. The long-term utility of lake surveys depends upon how carefully and completely conditions can be reconstructed from records and reports. Past surveys generally omit measures of variability for the data, allowing only qualitative comparisons to be drawn. In order to judge the graded responses of aquatic ecosystems, necessary to sound management, quantitative measures are needed.Deceased.  相似文献   

15.
Terminal lakes are impacted by regional changes in climate. Devils Lake (DL), North Dakota, United States (U.S.), is a case in which a prolonged shift in the precipitation pattern resulted in a 10‐m water‐level rise over the past two decades, which cost over one billion U.S. dollars in mitigation. Currently, DL is 1.5 m from an uncontrolled overspill to the nearby Sheyenne River, which could lead to unprecedented environmental, social, and economic costs. Water outlets recently implemented in the lake to slow the water‐level rise and prevent an uncontrolled overspill are subject to significant concerns over the introduction of invasive species and downstream water quality. We developed a hydrological model of the DL basin using the soil and water assessment tool and analyzed DL's overspill probability using an ensemble of statistically downscaled General Circulation Model (GCM) projections of the future climate. The results indicate a significant likelihood (7.3‐20.0%) of overspill in the next few decades in the absence of outlets; some members of the GCM integration ensemble suggest an exceedance probability of over 85.0 and 95.0% for the 2020s and 2050s, respectively. Full‐capacity outlets radically reduce the probability of DL overspill and are able to partially mitigate the problem by decreasing the average lake level by approximately 1.9 and 1.5 m in the 2020s and 2050s, respectively.  相似文献   

16.
Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA). We conducted analyses on two data sets: one that included all lakes and one that included only minimally disturbed lakes. Using hierarchical linear models that partitioned total variance into within-region and among-region components, we found that ecological drainage units and 8-digit hydrologic units most consistently captured among-region heterogeneity at their respective spatial scales using all lakes (variation among lake groups = 3% to 50% and 12% to 52%, respectively). However, regionalization schemes capture less among-region variance for minimally disturbed lakes. Diagnostics of spatial autocorrelation provided insight into the relative performance of regionalization frameworks but also demonstrated that region size is only partly responsible for capturing variation among lakes. These results suggest that regionalization schemes can provide useful frameworks for lake water quality assessment and monitoring but that we must identify the appropriate spatial scale for the questions being asked, the type of management applied, and the metrics being assessed.  相似文献   

17.
ABSTRACT: Topographic maps are commonly used to define populations of lakes in regional surveys of surface water quality. To illustrate the effect of different maps on that process, we compared the lakes represented on the 1:250,000-scale maps used for the Northeast Region of the Eastern Lake Survey—Phase I (ELS-I) to the lakes on a sample of large-scale maps (1:24,000 or 1:62,500). Lake areas at or near the lower limit of representation delimited “smallest-lake” values for the compared 1:250,000-scale maps. The regional median for these values was 4.5 hectares (ha) and ranged from 0.6 to 24.8 ha. Lake representation is influenced by cartographic limitations such as map scale, age, and complexity as well as the inherent variability of waterbodies (e.g., water level fluctuations or the creation of reservoirs, beaver impoundments, and oxbows). The total number of lakes on large-scale maps increased markedly as lake area decreased. Approximately 15,700 of the estimated 29,000 lakes in the EPA's Northeast Region were 1 to 4 ha in area. Because maps affect the size distribution of lakes included in a regional survey and because lake areas are thought to modify lake chemistry, maps ultimately affect the estimates of regional surface water quality.  相似文献   

18.
ABSTRACT: Data from a recent survey conducted by the Adirondack Lake Survey Corporation were used to evaluate the influence of lake surface area on the acid-base status of lakes in Adirondack State Park, New York. Acid neutralizing capacity (ANC) in the small lakes (< 4 ha) occurred more frequently at extreme values (> 200, < 0 μeq L?1), whereas larger lakes tended to be intermediate in ANC. Consequently, acidic (ANC ≤ 0) and low-pH lakes were typically small. The small lakes also exhibited lower Ca2+ concentration and higher dissolved organic carbon than did larger lakes. Lakes ≥ 4 ha were only half as likely to be acidic as were lakes ≥ 1 ha in area. These data illustrate the dependence of lake chemistry on lake surface area and the importance of the lower lake area limit for a statistical survey of lake water chemistry.  相似文献   

19.
The widespread recognition of lake degradation as a major environmental concern has led to accelerated efforts to better protect and manage lake resources. Where it is too late for avoidance strategies, lake rehabilitation is receiving increasing attention as a natural resources management option. In recent years, a significant number of lake rehabilitation experiences has been documented throughout the world, and many nations and states have embarked upon major lake rehabilitation programsLake rehabilitation is not a ready-to-go technology at this time and still must be regarded as partly experimental. Nevertheless, there have been a number of notably successful lake rehabilitation experiences. Reducing or halting the influx of undesirable materials is the sine qua non for lake rehabilitation. In most successful experiences to date, this has been accomplished by diversion and/or wastewater treatment. A number of in-lake strategies have also been employed to rehabilitate degraded lakes, often as part of an overall restoration plan. Techniques that appear to be most useful include dredging and nutrient inactivation. Several examples of successful applications are noted.Although efforts to rehabilitate lakes have produced a mixed record, there are encouraging results that suggest the viability of this approach. Lake rehabilitation, however, is no substitute for environmental management strategies that provide for protection of lake ecosystems in the first place.  相似文献   

20.
Abstract: Industrial activity in Canada’s north is increasing, placing demands on the use of water from lakes to build ice roads. Winter water withdrawal from these lakes has the potential to impact overwintering fish. Removal of water from small lakes can decrease oxygen and habitat available to fish. To address this issue, a protocol has been developed by the Department of Fisheries and Oceans outlining water withdrawal thresholds. Bathymetric surveys are the traditional method to determine lake depth, but are costly given the remoteness of northern lakes. This paper investigates the use of satellite C‐band synthetic aperture radar (SAR) remote sensing technology as a potential alternative or complement to traditional survey methods. Previous research has shown that a SAR can detect the transition from grounded to floating ice on lakes, or if a lake is completely frozen. Grounded ice has a dark signature while floating ice appears very bright in contrast. Similar results were observed for the datasets acquired in the study area. This suggests that lakes that freeze completely to the bottom can be identified using SAR. Such water bodies would not be viable fish overwintering habitat and can therefore be used as water sources without thresholds necessary. However, attempts to accurately calculate the depth of the ice at the grounded‐floating ice boundary using bathymetric profiles acquired in the summer and lake ice thickness measurements from a reference lake near Inuvik proved to be unreliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号