首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography–diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 μ g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

2.
Appendix     
Abstract

An atrazine‐degrading bacterial isolate (M91–3) was able to utilize simazine and cyanazine as N sources for glucose‐dependent growth. The degradation of these three 5‐triazine herbicides was also investigated in binary and ternary mixtures. The organism used atrazine and simazine indiscriminately, whereas cyanazine degradation was slow and delayed until the depletion of the two other herbicides. There was no apparent effect of other commonly used herbicides on the rate of atrazine degradation by M91–3.  相似文献   

3.
Ma WT  Fu KK  Cai Z  Jiang GB 《Chemosphere》2003,52(9):1627-1632
The excess use of triazine herbicides in agriculture causes severe contamination to the environment especially for ground water. Gas chromatography coupled with mass spectrometry (GC/MS) was used to analyze simazine, atrazine (ATR), cyanazine, as well as the degradation products of ATR such as deethylatrazine and deisopropylatrazine in environmental water samples. These compounds were baseline separated by the established GC method. The water samples were pre-concentrated by solid-phase-extraction (SPE) and analyzed by ion trap MS at sub- to low-ppt levels. Recovery of ATR by the SPE pre-concentration using a C18 cartridge was determined as 90.5 +/- 3.5%. Detection limit of the method using selected ion monitoring technique for ATR was 1.7 ppt when one liter water was analyzed. The relative analytical error for ATR fortified water samples at 200 ppt was -12.5% (n=12) with triple analysis and the relative standard deviation was 3.2%. Trace levels of ATR at 3.9 and 9.7 ppt were determined in water samples collected from a reservoir and a river in Hong Kong.  相似文献   

4.
This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed.  相似文献   

5.
Pesticide contamination of ground water in the United States--a review   总被引:2,自引:0,他引:2  
Over 70 pesticides have been detected in ground water. Aldicarb and atrazine along with the soil fumigants EDB and DCP and DBCP have been the pesticides most frequently detected in ground water. Atrazine concentrations have been correlated with high nitrate concentrations. The triazine herbicides, simazine and cyanazine, have also been detected in ground water. The annual amount of recharge, soil type, depth of aquifer from the surface, nitrate contamination and soil pH are important field parameters in determining ground-water contamination potential by pesticides. Pesticide leaching is reduced by proper choice of crop rotation, increasing pesticide application efficiency, and integrated pest management.  相似文献   

6.
《Chemosphere》1996,32(10):1919-1928
The concentrations of five triazine herbicides, two metabolites and the phenylurea herbicide linuron were studied in the sediments of the German Wadden Sea. Propazine and simazine were present in all samples, and in some samples concentrations exceeded 500 ng/kg fresh weight for propazine, terbutylazine, prometryn, linuron and the metabolite desethylatrazine. Particularly high concentrations existed in the river Weser estuary, but there were still detectable amounts at comparatively pristine areas as well.  相似文献   

7.
Solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) was used to analyze two triazine (atrazine and simazine) and three chloroacetamide herbicides (acetochlor, alachlor, and metolachlor) in water samples from a midwest US agricultural drainage ditch for two growing seasons. The effects of salt concentration, sample volume, extraction time, and injection time on extraction efficiency using a 100-mum polydimethylsiloxane-coated fiber were investigated. By optimizing these parameters, ditch water detection limits of 0.5 microgL(-1) simazine and 0.25 microgL(-1) atrazine, acetochlor, alachlor, and metolachlor were achieved. The optimum salt concentration was found to be 83% NaCl, while sample volume (10 or 20 mL) negligibly affected analyte peak areas. The optimum extraction time was 40 min, and the optimum injection time was 15 min. Results indicated that atrazine levels in the ditch water exceeded the US maximum contaminant level for drinking water 12% of the time, and atrazine was the most frequently detected among studied analytes.  相似文献   

8.
The results of a one-year monitoring program on the two Eastern Chinese River systems, i.e. the Liao-He and the Yangtse, with special emphasis on the presence of triazine herbicides are presented. Sediment, suspended solids and water samples from both rivers were analyzed. Additionally, recovery experiments on the SPE-in-field-enrichment procedure and the extraction methods were performed. The samples were measured by gas chromatography coupled with mass spectrometry, electron capture detection and a newly developed mu-plasma atomic emission detector. A typical result of a one-year monitoring was obtained in case of the Liao-He: During winter, at low water period, low triazine values were found. A similar situation was found in early spring. Highest concentrations of atrazine up to 1600 ng/l were found in late spring in the water samples. Maximum concentrations of atrazine, simazine, propazine, simetryn and prometryn were observed in this season as a result of the actual use of triazines. Finally, after the high water period in autumn the triazine concentrations decreased. Additionally, atrazine adsorbed on sediment (up to 2.8 ng/g) and suspended solids was determined (up to 8 ng/l) during late spring sampling. Therefore, the logarithm of the organic carbon based sorption coefficient of atrazine could be calculated. Low levels of atrazine were measured in the water of Yangtse (up to 18.3 ng/l). The concentrations from all sampling points and sampling stations of a particular sampling date were similar, which indicates a homogeneous distribution of this herbicide. Due to the high discharge rate of up to 79,000 m3/s in case of the Yangtse a considerable mass transport of up to 57.5 kg per day atrazine may take place, even at concentrations below the European drinking water limit of 100 ng/l.  相似文献   

9.
Impacts of flooding on the soil environment with regard to soil pollution with polycyclic aromatic hydrocarbons and s‐triazine (cyanazine, simazine, atriazine, propazine, prometryn) herbicides have been evaluated. No clear differences in the sum of the PAHs content were observed in the present studies. Only changes in the levels of individual PAHs were noted. In soils covered with flooding both at a depth of 0–20 and 20–40 high molecular weight PAHs were predominant (especially mutagenic and carcinogenic 5‐rings PAHs) whereas in non‐flooded areas, 2‐ and 3‐rings PAHs constituted over 80%. In the case of s‐triazine herbicides, no influence of flooding on the changes in their content in agriculturally used soils was noted. On the other hand, clearly lower levels of cyanazine, simazine and atriazine were not in the flooded forest soil as compared to the non‐flooded forest soil.  相似文献   

10.
Abstract

The region of Ribeirão Preto City, located in Southeast of Brazil, São Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 μg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 μg/L, which is above the allowable 0.1 μg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, “Chemical Movement in Layered Soil,” as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

11.
The region of Ribeir?o Preto City, located in Southeast of Brazil, S?o Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 microg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 microg/L, which is above the allowable 0.1 microg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, "Chemical Movement in Layered Soil," as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

12.
Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004-2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [microg kg-1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June-Sept, 2004, 2005) the growing season. In contrast, mean concentrations (microg L-1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 microg kg-1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

13.
During 1993, estuarine surface water samples were collected from the mid-Texas coast (Corpus Christi to Port Lavaca, TX). Agricultural watershed areas as well as tidal creeks immediately downstream were chosen as sampling sites along with adjoining bay sampling stations. Collections were made throughout the growing season (February to October 1993) before and after periods of significant (> 1.25 cm) rainfall. All samples were initially screened for the presence of pesticides using enzyme-linked immunosorbent assay (ELISA) test kits (EnviroGard) for triazine herbicides and carbamate insecticides. All samples were extracted and then analyzed using gas chromatography (GC) for quantification of atrazine. Only samples testing positive for carbamate insecticides via ELISA were further extracted for GC analysis to quantify aldicarb and carbofuran. Additionally, laboratory toxicity tests using phytoplankton were examined from published, peer-reviewed literature and compared with the atrazine field levels found in Texas. Results of ELISA screening indicated the presence of triazine herbicides in nearly all samples (>93%). GC analysis further confirmed the presence of atrazine concentrations ranging from <0.01-62.5 microg/L. Screening tests also found detectable levels of carbamate insecticides (aldicarb and carbofuran) that were also confirmed and quantified by GC. Comparison of measured concentrations of atrazine compared with published toxicity tests results indicated that there was a potential environmental risk for marine/estuarine phytoplankton in surface waters of Texas estuaries, particularly when the chronic nature of atrazine exposure is considered.  相似文献   

14.
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 microg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 microg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 microg/L in the NCGA sites and from 1.04 to 4.1 microg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were > or = 1 microg/L throughout the season, while DEA concentrations were mostly <0.5 microg/L before planting but increased after planting and application of herbicides to concentrations >2 microg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 microg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall.  相似文献   

15.
Tran AT  Hyne RV  Doble P 《Chemosphere》2007,67(5):944-953
The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.  相似文献   

16.

Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004–2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [μg kg?1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June–Sept, 2004, 2005) the growing season. In contrast, mean concentrations (μg L?1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 μg kg?1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

17.
J. P. Sherry  A. Borgmann 《Chemosphere》1993,26(12):2173-2184
Environmental immunoassays can help lower the operating costs and improve the effectiveness of residue laboratories. The present study assesses the ability of a commercially available enzyme immunoassay (EIA) to detect triazine herbicides in water. The tube based EIA could detect atrazine in lake and river water with detection limits of 62 pg/mL and 180 pg/mL respectively. The assay's ability to quantify atrazine in a set of 124 water samples taken from many parts of Canada was compared with a reference method that used gas chromatographic separation combined with a nitrogen phosphorous detector (GC-NPD) (R=0.919). A 71 % reduction in analytical load was achieved at a threshold concentration of 1 ng/mL. There were 2.4 % false negative and 0.8 % false positive results associated with that load reduction. The variability of the assay control parameters was generally within two standard deviations of the mean response for 65 assays. The EIA for atrazine is recommended for use as a screening technique and as an inexpensive way to monitor triazine levels in waters that are known to be contaminated with those herbicides.  相似文献   

18.
We surveyed four different river systems in the Greater Montreal region, upstream and downstream of entry points of contamination, from April 2007 to January 2009. The studied compounds belong to three different groups: PPCPs (caffeine, carbamazepine, naproxen, gemfibrozil, and trimethoprim), hormones (progesterone, estrone, and estradiol), and triazine herbicides and their metabolites (atrazine, deethylatrazine, deisopropylatrazine, simazine, and cyanazine). In the system A, B, and C having low flow rate and high TOC, we observed the highest detection frequencies and mass flows of PPCPs compared to the other compounds, reflecting discharge of urban contaminations through WWTPs and CSOs. However, in River D, having high flow rate and low TOC, comparable frequency of detection of triazine and their by-products and PPCPs, reflecting cumulative loads of these compounds from the Great Lakes as well as persistency against natural attenuation processes. Considering large differences in the removal efficiencies of caffeine and carbamazepine, a high ratio of caffeine/carbamazepine might be an indicative of a greater proportion of raw sewage versus treated wastewater in surface waters. In addition, caffeine appeared to be a promising indicator of recent urban fecal contaminations, as shown by the significant correlation with FC (R2 = 0.45), while carbamazepine is a good indicator of cumulative persistence compounds.  相似文献   

19.
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.  相似文献   

20.
As part of the Fluxes of Agrochemicals into the Marine Environment (FAME) project, the gross fluxes of selected pesticides (i.e. the herbicides atrazine, simazine, alachlor and metolachlor, the atrazine degradation product desethylatrazine, the insecticide dichlorvos and the antifouling agent Irgarol 1051) transported by the river Scheldt and the Canal Ghent-Terneuzen were determined from March 1995 through February 1997. In general, the observed temporal trends were related to the application period of the pesticides, except for metolachlor for which elevated concentrations were observed in the winter of 1995-1996. Relatively large gross fluxes were found for desethylatrazine compared with its parent compound. A study on the estuarine behaviour of pesticides showed distinct differences between the compound classes. The mixing plots of the organophosphorus insecticides dichlorvos and diazinon revealed clear evidence of estuarine loss processes which agrees with their low DT50 values reported for water/sediment systems, their relatively high Henry's law constants and, for diazinon, its relatively high Koc value. The mixing plots of the acetanilides alachlor and metolachlor were strongly influenced by an additional direct emission into the estuary, which was evident from a maximum in dissolved concentration near a salinity of 10@1000. An apparent conservative behaviour was observed for the triazine compounds atrazine and Irgarol 1051. This was in contrast to simazine, which showed an apparent non-conservative behaviour. However, the time profiles of the riverine concentrations of simazine did not exclude that the observed curvature was solely caused by estuarine losses; therefore, additional modelling is required. In a follow-up study a suitable hydrological model of the Scheldt estuary was constructed; the results will be presented in a forthcoming paper (Steen, R.J.C.A., Evers, E.H.G., Van Hattum, B., Cofino, W.P. and Brinkman, U.A.Th. Net fluxes of pesticides from the Scheldt estuary into the North Sea: a model approach. Environmental Pollution, submitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号