首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Canada, perfluoroalkyl acids (PFAAs) have been the focus of several monitoring programs and research and surveillance studies. Here, we integrate recent data and perform a multi-media assessment to examine the current status and ongoing trends of PFAAs in Canada. Concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and other long-chain perfluorocarboxylates (PFCAs) in air, water, sediment, fish, and birds across Canada are generally related to urbanization, with elevated concentrations observed around cities, especially in southern Ontario. PFOS levels in water, fish tissue, and bird eggs were below their respective Draft Federal Environmental Quality Guidelines, suggesting there is low potential for adverse effects to the environment/organisms examined. However, PFOS in fish and bird eggs tended to exceed guidelines for the protection of mammalian and avian consumers, suggesting a potential risk to their wildlife predators, although wildlife population health assessments are needed to determine whether negative impacts are actually occurring. Long-term temporal trends of PFOS in suspended sediment, sediment cores, Lake Trout (Salvelinus namaycush), and Herring Gull (Larus argentatus) eggs collected from Lake Ontario increased consistently from the start of data collection until the 1990s. However, after this time, the trends varied by media, with concentrations stabilizing in Lake Trout and Herring Gull eggs, and decreasing and increasing in suspended sediment and the sediment cores, respectively. For PFCAs, concentrations in suspended sediment, sediment cores, and Herring Gulls generally increased from the start of data collection until present and concentrations in Lake Trout increased until the late 1990s and subsequently stabilized. A multimedia comparison of PFAA profiles provided evidence that unexpected patterns in biota of some of the lakes were due to unique source patterns rather than internal lake processes. High concentrations of PFAAs in the leachate and air of landfill sites, in the wastewater influent/effluent, biosolids, and air at wastewater treatment plants, and in indoor air and dust highlight the waste sector and current-use products (used primarily indoors) as ongoing sources of PFAAs to the Canadian environment. The results of this study demonstrate the utility of integrating data from different media. Simultaneous evaluation of spatial and temporal trends in multiple media allows inferences that would be impossible with data on only one medium. As such, more co-ordination among monitoring sites for different media is suggested for future sampling, especially at the northern sites. We emphasize the importance of continued monitoring of multiple-media for determining future responses of environmental PFAA concentrations to voluntary and regulatory actions.  相似文献   

2.
This study investigates the influence of biological and environmental factors on the concentrations of perfluoroalkyl acids (PFAAs) in a top predator; the American mink. Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) with C8–C13 perfluorinated carbon chains were analyzed in livers from wild male mink liver (n = 101) from four areas in Sweden representing two inland environments (rural and highly anthropogenic, respectively) and two different coastal environments. Mean PFOS concentrations were 1250 ng/g wet weight and some mink from the urban inland area had among the highest PFOS concentrations ever recorded in mink (up to 21 800 ng/g wet weight). PFBS was detected in 89% of the samples, but in low concentrations (mean 0.6 ng/g ww). There were significant differences in PFAA concentrations between the geographical areas (p < 0.001–0.01). Age, body condition and body weight did not influence the concentrations significantly, but there was a seasonal influence on the concentrations of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) (p < 0.01 and p < 0.05, respectively), with lower concentrations in autumn samples than in samples taken in the winter and spring. It is thus recommended to take possible seasonal differences into account when using mink exposure data. The overall results suggest that the mink is a suitable sentinel species for assessing and monitoring environmental levels of PFAAs.  相似文献   

3.
鄱阳湖表层水中全氟辛酸和全氟辛烷磺酸污染现状调查   总被引:1,自引:0,他引:1  
为阐明鄱阳湖表层水中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的污染现状,于2011年4月7~9日采集鄱阳湖的表层水样30份和长江水样2份,采用超高效液相色谱-三重四极杆串联质谱/质谱法检测样品中PFOS和PFOA含量,探索鄱阳湖表层水中PFOS和PFOA的污染水平及空间分布特征。结果表明: PFOS和PFOA的浓度范围分别为未检出~071 ng/L和030 ~189 ng/L,均值分别为035 ng/L和110 ng/L。而位于长江的0号点水中PFOA和PFOS含量分别为1511 ng/L和081 ng/L。鄱阳湖表层水中的PFOS和PFOA在整体上都呈现南部高于北部的趋势,这可能是由鄱阳湖的水动力条件和其周边PFCs污染源分布不同所致。以上研究结果显示,鄱阳湖表层水中PFOS和PFOA处于较低的污染水平  相似文献   

4.
Although several studies have reported the ubiquitous occurrence of parabens in human specimens and the environment, little is known about the accumulation of these estrogenic chemicals in fish and birds. In this study, accumulation profiles of six parabens and their metabolites were determined in 254 tissue (including liver, kidney, egg, and plasma) samples from 12 species of fish and seven species of birds collected from inland, coastal, and remote aquatic ecosystems. In addition, liver and kidney tissues from black bears were analyzed. Methyl paraben (MeP) was found in a majority of the tissues, with the highest concentration (796 ng/g (wet weight [wet wt])) found in the liver of a bald eagle from Michigan. 4-Hydroxy benzoate (HB) was the major metabolite, found in 91% of the tissue samples analyzed at concentrations as high as 68,600 ng/g, wet wt, which was found in the liver of a white-tailed sea eagle from the Baltic Sea coast. The accumulation pattern of MeP and 4-HB varied, depending on the species. The mean concentrations of MeP measured in fishes from Michigan, New York, and Florida waters were < 2.01 (fillet), 152 (liver), and 32.0 (liver) ng/g, wet wt, respectively, and the corresponding 4-HB concentrations were 39.5, 10,500, and 642 ng/g, wet wt. The mean hepatic and renal concentrations of 4-HB in black bears were 1,720 and 1,330 ng/g, wet wt, respectively. The concentrations of MeP and 4-HB were significantly positively correlated with each other in various tissues and species, which suggested a common source of exposure to these compounds in fish and birds. Trace concentrations of MeP and 4-HB also were found in the tissues of albatrosses from Midway Atoll, Northwestern Pacific Ocean, which suggested widespread distribution of these compounds in the marine environment.  相似文献   

5.
Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (> 1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C6 to C15 PFCAs, C4, C6, C8 and C10 PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., > 99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223 (± 247.1 SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1 (± 83.8) ng/g and 130.3 (± 43.6) ng/L downstream of the airport, and 19.1 (± 2.7) ng/g and 6.8 (± 0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River.  相似文献   

6.
Exposure to aqueous film forming foam (AFFF) was evaluated in 149 firefighters working at AFFF training facilities in Australia by analysis of PFOS and related compounds in serum. A questionnaire was designed to capture information about basic demographic factors, lifestyle factors and potential occupational exposure (such as work history and self-reported skin contact with foam). The results showed that a number of factors were associated with PFAA serum concentrations. Blood donation was found to be linked to low PFAA levels, and the concentrations of PFOS and PFHxS were found to be positively associated with years of jobs with AFFF contact. The highest levels of PFOS and PFHxS were one order of magnitude higher compared to the general population in Australia and Canada. Study participants who had worked ten years or less had levels of PFOS that were similar to or only slightly above those of the general population. This coincides with the phase out of 3M AFFF from all training facilities in 2003, and suggests that the exposures to PFOS and PFHxS in AFFF have declined in recent years. Self-reporting of skin contact and frequency of contact were used as an index of exposure. Using this index, there was no relationship between PFOS levels and skin exposure. This index of exposure is limited as it relies on self-report and it only considers skin exposure to AFFF, and does not capture other routes of potential exposure. Possible associations between serum PFAA concentrations and five biochemical outcomes were assessed. The outcomes were serum cholesterol, triglycerides, high-density lipoproteins, low density lipoproteins, and uric acid. No statistical associations between any of these endpoints and serum PFAA concentrations were observed.  相似文献   

7.
Diet is an important source of perfluorinated compound (PFC) exposure and seafood is an important diet component for coastal populations. Therefore, it is necessary to monitor the concentrations of PFCs in seafood. In this study, we measured thirteen PFCs in 47 fatty fish and 45 shellfish samples collected from six coastal provinces in China (Liaoning, Shandong, Jiangsu, Zhejiang, Fujian, and Guangdong), using an ultra-performance liquid chromatography and tandem mass spectrometry (UPLC–MS/MS). Perfluorooctanesulfonate (PFOS) was the dominant PFC in fatty fish which accounted for 38% of total PFCs, whereas perfluoroctanoic acid (PFOA) was the predominant PFC in shellfish. Concentrations of PFOS were ranged from less than 1.4 to 1627 pg/g wet weight in fatty fish, with the highest concentration in red drum from Jiangsu. Concentrations of PFOA in shellfish ranged from less than 5.4 to 7543 pg/g wet weight, with the maximum concentration found in briny clam also from Jiangsu. Compared with other studies, the PFC levels in seafood collected from our studied areas are relatively low. The estimated dietary intakes (EDI, pg/kg body weight /day) of PFOA, PFOS and total PFCs for the reference man (63 kg body weight) were calculated by multiplying the mean concentrations (pg/g wet weight) of PFOA, PFOS and total PFCs in six coastal provinces with the daily consumption data (g/day) from the fourth Chinese total diet study carried out in 2007. The highest EDI of PFOS and PFOA were found to be 694 pg/kg body weight/day and 914 pg/kg body weight/day in Guangdong and Jiangsu, respectively. However, the highest EDI of total PFCs was found in Fujian at 2513 pg/kg body weight/day. The EDI from seafood is much lower than the tolerable daily intake (TDI) recommended by the European Food Safety Authority in 2008 indicating low health risk of PFC exposure via eating seafood among the coastal populations in China.  相似文献   

8.
This study reports the results of a screening survey of perfluoroalkyl compounds (PFCs) in the Danish environment. The study included point sources (municipal and industrial wastewater treatment plants and landfill sites) and the marine and freshwater environments. Effluent and influent water and sewage sludge were analysed for point sources. Sediment, blue mussels (Mytilus edulis) and liver from plaice (Pleuronectes platessa), flounder (Platichthys flesus) and eel (Anguilla anguilla) were analysed for the freshwater and marine environments. The results obtained show a diffuse PFCs contamination of the Danish environment with concentrations similar to those measured in other countries with the absence of primary contamination sources such as fluorochemical production. PFOS and PFOA were generally the most dominating PFCs measured in both point sources and the aquatic environments. PFCs were found in both inflow and outflow water and sewage sludge from municipal and industrial wastewater treatment plants (WWTPs), indicating that WWTPs can be significant sources to PFCs in the environment. This is also reflected in the locally elevated PFCs concentrations found in fish like eels from shallow freshwater and marine areas. However, the highest PFCs concentrations found in fish in this study was in plaice from the Skagerrak (156 ng/g wet weight PFOS), but it is unknown if this can be related to significant sources in the North Sea region or to differences between species. The concentrations of PFCs were below the detection limit in all analysed freshwater and marine samples of sediment and mussels. Despite the relatively low PFCs concentrations measured in marine fish, the high bioaccumulation potential of PFCs, particularly PFOS, may lead to high concentrations of PFCs in marine mammals as shown by previous investigations.  相似文献   

9.
Daily dietary intake of perfluorinated chemicals (PFCs) in relation to serum levels was assessed by determination of nine PFCs including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in matched daily diet duplicates and serum samples. Diet and serum were collected in year 2004 from 20 women in Osaka and Miyagi, Japan. Only PFOS and PFOA were detected in the diet samples and no significant difference between cities was seen. After adjusted by water content, diet concentration of PFOA was significantly higher in Osaka. The median daily intake calculated using the measured diet concentrations was 1.47 ng PFOS/kg b.w. and 1.28 ng PFOA/kg b.w. for Osaka, and 1.08 ng PFOS/kg b.w. and 0.72 ng PFOA/kg b.w. for Miyagi. A significant difference between cities was seen for the serum concentrations with median of 31 ng/mL PFOS and PFOA in Osaka, compared to 14 ng/mL PFOS and 4.6 ng/mL PFOA in Miyagi. Carboxylates such as perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were also detected in serum at median levels 6.9 ng/mL and 3.2 ng/mL (Osaka), and 2.8 ng/mL and 5.1 ng/mL (Miyagi). Based on one-compartment model under steady state, dietary intake of PFOS and PFOA accounted for only 22.4% and 23.7% of serum levels in Osaka females, and in contrast 92.5% and 110.6% in Miyagi females, respectively.  相似文献   

10.
Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20 ng/L, 0.39 ng/g and 0.21 ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10 ng/L, 4.98 ng/g and 2.49 ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between compartments and advection fluxes between sub-regions. It showed that soil and costal water were likely to be the most important sinks of PFOS in the Bohai costal region, in which more than 90% of PFOS was stored. Flows of fresh water were the driving force for spatial transport of PFOS in this region. Influences of the seasonal change of fresh water fluxes on the model results were also analyzed. When only seasonal changes of the fresh water flow rates were considered, concentrations of PFOS in winter and spring were predicted to be higher than that under annual average conditions, while the concentrations in summer and autumn were lower. For PFOS fluxes entering the sea, opposite conclusions were drawn compared to the concentrations. Environmental risks from the presence of PFOS in fresh water were assessed for this region through comparison with available water quality criteria values. The predicted concentrations of PFOS in the Bohai coastal region provided by the model were lower than the water quality criteria published by the United States Environmental Protection Agency and Chinese researchers, while the concentrations in more than 80% of the sampling locations exceeded the European Union Water Framework Directive Environmental Quality Standards values. Seasonal variations of flow rate might cause a significant increase in environmental risks.  相似文献   

11.
Organochlorines such as PCBs, DDTs, HCHs, CHLs and HCB were determined in pooled whole body homogenized of fish samples collected from five locations during 1998 and 2003 in order to understand their contamination status, temporal and spatial variation in Indonesian waters. PCBs and DDTs were the predominant contaminants with concentrations from 9.7 to 2700 ng/g lipid wt. and 12 to 1100 ng/g lipid wt., respectively, while HCHs (nd-24 ng/g lipid wt.), CHL compounds (nd-81 ng/g lipid wt.) and HCB (0.22-28 ng/g lipid wt.) were one to two orders of magnitude lower. Among the locations, PCBs and CHLs were higher in the samples from highly industrialized and thickly populated-locations, whereas OC pesticides such as DDTs and HCHs were particularly more prominent in suburban and rural areas. Levels of OCs observed in the waters surrounding Java Island were higher than those in Sumatra Island, implying significant use of OCs in highly populated Java Island. Concentrations of PCBs and DDTs in fish from Jakarta Bay were significantly lower in the samples collected in 2003 as compared to fish in 1998, indicating decreasing trend of these compounds in the Indonesian environment. Recent estimated average daily intakes of PCBs (0.81 microg/person/day), DDTs (1.1 microg/person/day), HCHs (0.018 microg/person/day), CHLs (0.010 microg/person/day) were much lower than the threshold values recommended by various agencies, suggesting minimal risk of this compound via fish ingestion to Indonesians.  相似文献   

12.
Polychlorinated biphenyls including coplanar congeners were measured in the liver of different species of skates and ghostsharks. The mean concentrations of PCBs in skates (314 ng/g wet wt) were comparable with those in ghostsharks (285 ng/g wet wt). The specific analysis of PCB congeners in skates hepatic tissue revealed a profile dominated by hexa-, penta-, and heptachlorinated congeners followed by trichlorobiphenyls, tetra- and decachlorobiphenyls. A different profile dominated by hexa-, tri-, and pentachlorinated congeners, followed by heptachlorobiphenyl and decachlorobiphenyls was found in ghostsharks liver. The estimated 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) of coplanar PCBs in skates and ghostsharks were 0.48 and 0.33 pg/g wet weight, respectively, with mono-ortho congeners PCB105, 118 and 156 contributing more than 90% to the TEQs.  相似文献   

13.
Perfluorooctane sulfonate (PFOS) is the stable end product of the degradation of various perfluorinated compounds and is the predominant compound found in the environment and biota. PFOS is a widespread environmental contaminant that is found in a great diversity of wildlife species with more elevated tissue concentrations in animals from populated and industrialized areas. In this study we determined the PFOS accumulation in blood and livers of a small songbird, the great tit (Parus major), in the vicinity of a large fluorochemical plant in Antwerp, Belgium. PFOS concentrations ranged from 553 ng/g to 11359 ng/g in liver and ranged from 24 to 1625 ng/ml in blood, which are among the highest ever reported in free-living animals, and exceeded in almost all birds the hepatic benchmark concentrations for the protection of avian species [Beach SA, Newsted JL, Coady K, Giesy JP. Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS). Rev Environ Contam Toxicol 2006;186:133-174]. Although PFOS concentrations in liver and blood decreased significantly within approximately 5.5 km of the plant, differences were smaller than previously described for wood mice (Apodemus sylvaticus) and nestling great tits. PFOS concentrations in liver and blood were higher in young birds (one-year old). No significant sex differences were found. A highly significant correlation between liver and blood concentrations indicates the usefulness of blood as a non-destructive matrix for biomonitoring purposes.  相似文献   

14.
Contributions of direct and indirect (via precursors) pathways of human exposure to perfluorooctane sulfonic acid (PFOS) isomers and perfluoroalkyl carboxylic acids (PFCAs) are estimated using a Scenario-Based Risk Assessment (SceBRA) modelling approach. Monitoring data published since 2008 (including samples from 2007) are used. The estimated daily exposures (resulting from both direct and precursor intake) for the general adult population are highest for PFOS and perfluorooctanoic acid (PFOA), followed by perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA), while lower daily exposures are estimated for perfluorobutanoic acid (PFBA) and perfluorododecanoic acid (PFDoDA). The precursor contributions to the individual perfluoroalkyl acid (PFAA) daily exposures are estimated to be 11–33% for PFOS, 0.1–2.5% for PFBA, 3.7–34% for PFHxA, 13–64% for PFOA, 5.2–66% for PFDA, and 0.7–25% for PFDoDA (ranges represent estimated precursor contributions in a low- and high-exposure scenario). For PFOS, direct intake via diet is the major exposure pathway regardless of exposure scenario. For PFCAs, the dominant exposure pathway is dependent on perfluoroalkyl chain length and exposure scenario. Modelled PFOS and PFOA concentrations in human serum using the estimated intakes from an intermediate-exposure scenario are in agreement with measured concentrations in different populations. The isomer pattern of PFOS resulting from total intakes (direct and via precursors) is estimated to be enriched with linear PFOS (84%) relative to technical PFOS (70% linear). This finding appears to be contradictory to the observed enrichment of branched PFOS isomers in recent human serum monitoring studies and suggests that either external exposure is not fully understood (e.g. there are unknown precursors, missing or poorly quantified exposure pathways) and/or that there is an incomplete understanding of the isomer-specific human pharmacokinetic processes of PFOS, its precursors and intermediates.  相似文献   

15.
The unhatched eggs of the following seabirds were analyzed to quantify PCBs, hexachlorobenzene (HCB), α-, β-, γ-, δ-hexachlorocyclohexanes (HCHs), o,p' and p,p' isomers of DDT, DDD and DDE: resident Adèlie (Pygoscelis adèliae, ADPE) and Emperor (Aptenodytes forsteri, EMPE) penguins, migrating snow petrel (Pagodroma nivea, SNPT) and South Polar skua (Catharacta maccormicki, SPSK) from the Ross Sea (East Antarctica); and migrating Brown skua (Catharacta antartica, BRSK) and resident ADPE from the Brainsfield Strait (West Antarctica). The general aims were to evaluate the contaminant accumulation in eggs of migrating and resident species in the two study areas, and to compare levels in penguins and skuas nesting in East and West Antarctica. PCB congener and HCH and DDT isomer profiles were also assessed. Comparisons were evaluated using seven PCB congeners (IUPAC nos. 28, 52, 101, 118+149, 138, 153, and 180), p,p'-DDE, ΣDDTs, and ΣHCHs. Higher contaminant concentrations were detected in migrating seabirds (South polar skua and brown skua)>sub-Antarctic species (snow petrel)>Antarctic species (penguins) from both the sampling sites, suggesting contamination events at lower latitudes for those birds migrating northward. HCHs showed the lowest concentrations in all species (from 0.03±0.03 ng/g wet wt in SPSK to 1.81±1.23 ng/g wet wt in ADPE from West Antarctica), and PCBs were the most abundant contaminants (from 4.34±2.15 ng/g wet wt. in EMPE to 53.41±19.61 ng/g wet wt. in brown skua). Among pesticides, it is relevant the detection of p,p'-DDT in Adèlie penguin from West Antarctica and in both species of skua; the detection of this pesticide can confirm its actual use in certain malaria-endemic countries from where it is transferred through the long range transport to the polar regions. Contaminants did not show any significant temporal trend during a ten year time span, from 1994/95 to 2004/05, in organisms collected in East Antarctica and they did not indicate any latitudinal gradient along the Ross Sea coasts.  相似文献   

16.
Releases of aqueous film-forming foams (AFFFs) from airport firefighting activities have been identified as important local point sources of per- and polyfluoroalkyl substances (PFASs) in nearby waterways. PFASs can be taken up by fish, and in turn by the humans that consume them. Despite the global extent of AFFF emissions, few studies exist on related impacts on humans. We aimed to investigate the associations between the consumption of fish from AFFF-affected waters and serum PFAS concentrations in humans using a combination of statistical tools, empirical data, and toxicokinetic modeling. Participants of the SAMINOR 2 Clinical Study were the basis for this study sample, which comprised 74 persons. Fifty-nine participants who reported consuming fish from AFFF-affected waters and 15 nonconsumers completed a questionnaire and gave serum samples. Participants were classified based on their consumption of trout and char: high (n = 16), moderate (n = 16), low (n = 27), and nonconsumers (n = 15); and serum samples were tested for the presence of 15 PFASs. Perfluorooctane sulfonic acid (PFOS) was found in all participants, with the highest concentrations detected in the high consumption group (geometric means, 28 ng/mL) compared to the low consumption group and nonconsumers (10 and 11 ng/mL, respectively). In an analysis of variance contrast model, a significant, positive increasing trend was seen for fish consumption and PFOS, perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Toxicokinetic modeling allowed us to predict the median increases in serum concentrations of PFOS, PFHxS, and PFNA among high consumers within a factor of 2.2. The combination of statistical evaluation and toxicokinetic modeling clearly demonstrated a positive relationship between consumption of fish from AFFF-affected waters and serum PFAS concentrations. Further studies on dietary exposure to other PFASs present in AFFF and its consequences on human health are warranted.  相似文献   

17.
We aimed to estimate the levels and time trends of perfluorinated alkyl acids (PFAAs) in serum of 1533 Danish pregnant nulliparous women between 2008 and 2013. The selection criterion of only including nulliparous women was chosen to avoid confounding from parity. The serum samples were analyzed for sixteen PFAAs using solid phase extraction and liquid chromatography tandem mass spectrometry (LC-MS/MS). We investigated the time trends for seven PFAAs, which were detected in more than 50% of the samples: perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnA). We found that the serum levels of all seven PFAAs decreased during the period from 2008 to 2013; on average PFHxS decreased with 7.0% per year, PFHpS with 14.8%, PFOS with 9.3%, PFOA with 9.1%, PFNA with 6.2%, PFDA with 6.3%, and PFUnA with 7.1% per year. Adjustment for maternal age, body mass index (BMI), educational level and gestational age at blood sampling did not change the time trends much. To our knowledge, we are the first to report decreasing trends of PFNA, PFDA and PFUnA since year 2000, thereby indicating that the phase-out of these compounds are beginning to show an effect on human serum levels.  相似文献   

18.
We aimed to characterize levels of polyfluorinated compounds (PFCs) in indoor dust from offices, homes, and vehicles; to investigate factors that may affect PFC levels in dust; and to examine the associations between PFCs in dust and office workers' serum. Dust samples were collected in 2009 from offices, homes, and vehicles of 31 individuals in Boston, MA and analyzed for nineteen PFCs, including perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), fluorotelomer alcohols (FTOHs), and sulfonamidoethanols (FOSEs). Serum was collected from each participant and analyzed for eight PFCs including PFOA and PFOS. Perfluorononanoate, PFOA, perfluoroheptanoate, perfluorohexanoate, PFOS and 8:2 FTOH had detection frequencies > 50% in dust from all three microenvironments. The highest geometric mean concentration in office dust was for 8:2 FTOH (309 ng/g), while PFOS was highest in homes (26.9 ng/g) and vehicles (15.8 ng/g). Overall, offices had the highest PFC concentrations, particularly for longer-chain carboxylic acids and FTOHs. Perfluorobutyrate was prevalent in homes and vehicles, but not offices. PFOA serum concentrations were not associated with PFC dust levels after adjusting for PFC concentrations in office air. Dust concentrations of most PFCs are higher in offices than in homes and vehicles. However, indoor dust may not be a significant source of exposure to PFCs for office workers. This finding suggests that our previously published observation of an association between FTOH concentrations in office air and PFOA concentrations in office workers was not due to confounding by PFCs in dust.  相似文献   

19.
A total of 27 per- and polyfluorinated compounds (PFCs) were determined in both house dust (n = 10) and indoor air (n = 10) from selected homes in Catalonia, Spain. Concentrations were found to be similar or lower than those previously reported for household microenvironments in other countries. Ten PFCs were detected in all house dust samples. The highest mean concentrations corresponded to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA), 10.7 ng/g (median: 1.5 ng/g) and 10.4 ng/g (median: 5.4 ng/g), respectively, while the 8:2 fluorotelomer alcohol (FTOH) was the dominating neutral PFC at a concentration of 0.41 ng/g (median: 0.35 ng/g). The indoor air was dominated by the FTOHs, especially the 8:2 FTOH at a mean (median) concentration of 51 pg/m3 (median: 42 pg/m3). A limited number of ionic PFCs were also detected in the indoor air samples. Daily intakes of PFCs were estimated for average and worst case scenarios of human exposure from indoor sources. For toddlers, this resulted in average intakes of ∑ ionic PFCs of 4.9 ng/day (0.33 ng/kgbw/day for a 15 kg toddlers) and ∑ neutral PFCs of 0.072 ng/day (0.005 ng/kgbw/day) from house dust. For adults, the average daily intakes of dust were 3.6 and 0.053 ng/day (0.05 and 0.001 ng/kgbw/day for a 70 kg adult) for ∑ ionic and ∑ neutral PFCs, respectively. The average daily inhalation of ∑ neutral PFCs was estimated to be 0.9 and 1.3 ng/day (0.06 and 0.02 ng/kgbw/day) for toddlers and adults, respectively. For PFOS, the main ionic PFC detected in indoor air samples, the median intakes (based on those samples where PFOS was detected), resulted in indoor exposures of 0.06 and 0.11 ng/day (0.004 and 0.002 ng/kgbw/day) for toddlers and adults, respectively. Based on previous studies on dietary intake and drinking water consumption, both house dust and indoor air contribute significantly less to PFC exposure within this population.  相似文献   

20.
Lake Ontario water and sediment collected from tributary, nearshore, and open lake sites were analyzed for perfluoroalkyl substances (PFASs), namely perfluoroalkyl carboxylic acids (PFCAs, F(CF2)nCO2; n = 6-11,13) and perfluoroalkane sulfonic acids (PFSAs, F(CF2)nSO3; n = 6,8,10). Survey results of surface sediment and water indicated that shorter chained PFASs were predominant in and near urban/industrial area watersheds, while longer chained PFASs were predominant in fine-grained sediment from major depositional basins. Niagara River suspended solids (1981–2006) demonstrated temporal trends that may have been influenced by recent changes in North American production and use of PFASs. Perfluorooctane sulfonate (PFOS) reached a peak concentration in 2001 of 1.1 ng/g, followed by a decrease from 2001 to 2006 (half-life = 9 years). Perfluorooctanoic acid (PFOA) increased from 2001 to 2006 (doubling time = 2 years) reaching a peak concentration of 0.80 ng/g. In contrast, three sediment cores from western, central, and eastern Lake Ontario showed increasing temporal trends to surface sediment for all PFASs. PFOA and PFOS concentrations increased from 1988 to 2004 (doubling time = ~ 4 years) in the western Lake Ontario core. The observed variations in temporal trends from different environmental compartments may be a result of the physico-chemical properties of PFASs, ongoing emissions, and the environmental transformation and degradation of PFAS precursor compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号