首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems--in a lake's riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework for linking ecological and social factors important to development. In a test of this framework in northern Minnesota, researchers identified seven constructs influencing riparian area development: current general development, current housing development, and availability, accessibility, suitability, aesthetics, and proximity to services. Profiles display a lake's value for each construct relative to the range of values for all lakes in the county. Maps, developed using indicators for several constructs, allow us to identify how the factors interact and are dispersed across the landscape. These profiles help policy makers, planners, and managers identify lakes that are potential development hotspots so they can take timely steps to manage development or control the impacts of development.  相似文献   

2.
Building on the scientific literature, this article first summarises the socio-environmental impacts of land-use change expected to occur in high amenity Australian peri-urban areas, involving in particular, the effects of land development on agriculture, biodiversity, landscape character, bushfire risk and social factors. Second, the current spatial planning framework and its distribution in seven municipalities in Victoria, Australia, is critically analysed, and records of approved planning permits are related to this framework to assess the challenges posed by peri-urban growth. We argue that the current planning framework supports a static approach which does not address foreseen challenges and lacks strategic power. Both the strategic framework and the development approval process lead to unanticipated, cumulative impacts and contestation. A more coordinated, less urban-centric approach to planning and the introduction of rural land-use plans would substantially address some of the issues encountered.  相似文献   

3.
Reed beds of Phragmites australis in the River Amudarya delta near the Aral Sea constitute permanent breeding areas of the Asian Migratory locust, Locusta migratoria migratoria. Every year, thousands of hectares are treated with broad-spectrum insecticides to prevent locust swarms from damaging crops in adjacent areas. To devise efficient locust monitoring and management plans, accurate and updated information about the spatial distribution of reeds is necessary. Given the vast geographic extent of the delta, traditional, ground survey methods are inadequate. Remotely sensed data collected by the MODIS sensor aboard the TERRA satellite provide a useful tool to characterize the spatial distribution of reeds. Multi-temporal MODIS data, collected at different times of the growing season, were used to generate spectral-temporal signatures for reeds and other land cover classes. These spectral-temporal signatures were matched with reed phenology. MODIS information was digitally classified to generate a land cover map with an overall accuracy of 74%. MODIS data captured 87% of the ground-verified reed locations. Estimates derived from MODIS data indicate that 18% of the study area was covered by reeds. However, high commission error resulted from misclassification of reeds mixed with shrubs class and shrubs class as reeds. This could have resulted in overprediction of the area covered by reeds. Additional research is needed to minimize the overlap between reeds and other vegetation classes (shrubs, and reed and shrub mix). Nevertheless, despite its relatively low spatial resolution (250 m), multi-temporal MODIS data were able to adequately capture the distribution of reeds. Instead of blanketing the fragile wetland ecosystem of the Amudarya delta with chemical anti-locust treatments, plant protection specialists can use this information to devise ecologically sound pest management plans aimed at reducing the adverse environmental impact in the zone of the Aral Sea ecological catastrophe. MODIS methodology to identify reed stands can be applicable to the Migratory locust habitats in other geographic areas.  相似文献   

4.
5.
6.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   

7.
ABSTRACT: Bank erosion along a river channel determines the pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for riparian vegetation to get established. Migration also erodes existing riparian, agricultural, and urban lands, sometimes damaging human infrastructure (e.g., scouring bridge foundations and endangering pumping facilities) in the process. Understanding what controls the rate of bank erosion and associated point bar deposition is necessary to manage large alluvial rivers effectively. In this study, bank erosion was proportionally related to the magnitude of stream power. Linear regressions were used to correlate the cumulative stream power, above a lower flow threshold, with rates of bank erosion at 13 sites on the middle Sacramento River in California. Two forms of data were used: aerial photography and field data. Each analysis showed that bank erosion and cumulative effective stream power were significantly correlated and that a lower flow threshold improves the statistical relationship in this system. These correlations demonstrate that land managers and others can relate rates of bank erosion to the daily flow rates of a river. Such relationships can provide information concerning ecological restoration of floodplains related to channel migration rates as well as planning that requires knowledge of the relationship between flow rates and bank erosion rates.  相似文献   

8.
Abstract: Spatio‐temporal linkages between hydrologic and ecologic dimensions of watersheds play a critical role in conservation policies. Habitat potential is influenced by variation along longitudinal and lateral gradients and land use disturbance. An assessment of these influences provides critical information for protecting watershed ecosystems and in making spatially explicit, conservation decisions. We use an ecohydrologic approach that focuses on interface between hydrological and ecological processes. This study focuses on changes in watershed habitat potentials along lateral (riparian), and longitudinal (stream order) dimensions and disturbance (land use). The habitat potentials were evaluated for amphibians, reptiles, mammals, and birds in the Westfield River Watershed of Massachusetts using geographic information systems and multivariate analysis. We use a polynomial model to study nonlinear effects using robust regression. Various spatial policies were modeled and evaluated for influence on species diversity. All habitat potentials showed a strong influence along spatial dimensions and disturbance. The habitat potential for all vertebrate groups studied decreased as the distance from the riparian zone increased. Headwaters and lower order subwatersheds had higher levels of species diversity compared to higher order subwatersheds. It was observed that locations with the least disturbance also had higher habitat potential. The study identifies three policy criteria that could be used to identify critical areas within a watershed to conserve habitat suitable for various species through management and restoration activities. A spatially variable policy that is based on stream order, riparian distance, and land use can be used to maximize watershed ecological benefits. Wider riparian zones with variable widths, protection of headwaters and lower order subwatersheds, and minimizing disturbance in riparian and headwater areas can be used in watershed policy. These management objectives could be achieved using targeted economic incentives, best management practices, zoning laws, and educational programs using a watershed perspective.  相似文献   

9.
10.
The cumulative dimensions of impact in resource regions   总被引:1,自引:0,他引:1  
The development of mineral and energy resources worldwide has placed pressure on regional environments, economies and communities. The cumulative impacts, or cumulative effects, arising from overlapping development have stretched political systems that have traditionally been geared toward the regulation and management of individual resource developments, presenting challenges for policy makers, resource developers and civil society actors. An equally challenging task has been realisation of the potential development dividends of mineral and energy resources in the areas of business development, infrastructure, human development or the management of resource revenues. This paper introduces a special issue on ‘Understanding and Managing Cumulative Impacts in Resource Regions’. The special issue interrogates the effectiveness of new and traditional policy responses, explores methods and strategies to better respond to cumulative impacts, and details practical examples of collaborative and coordinated approaches. Papers cover a range of environmental, economic and social issues, geographical regions, commodities, and conceptual approaches. This introductory paper introduces the cumulative impact issues that have manifest in resource regions, critically appraises current conceptions of cumulative impacts, and details management and policy responses to address the cumulative dimensions of impact.  相似文献   

11.
Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S. Seventy-four USDA Forest Service Fire Management Officers (FMOs) in 11 states were interviewed to collect information on the number and characteristics of riparian fuel reduction treatments in their management district. Just under half of the FMOs surveyed (43%) indicated that they were conducting fuel reduction treatments in riparian areas. The primary management objective listed for these projects was either fuel reduction (81%) or ecological restoration and habitat improvement (41%), though multiple management goals were common (56%). Most projects were of small extent (93% < 300 acres), occurred in the wildland-urban interface (75%), and were conducted in ways to minimize negative impacts on species and habitats. The results of this survey suggest that managers are proceeding cautiously with treatments. To facilitate project planning and implementation, managers recommended early coordination with resource specialists, such as hydrologists and fish and wildlife biologists. Well-designed monitoring of the consequences of riparian fuel treatments on fuel loads, fire risk, and ecological effects is needed to provide a scientifically-defensible basis for the continued and growing implementation of these treatments.  相似文献   

12.
13.
Ecological impacts on camp and picnic sites were examined in three National Park Service units along the Delaware and New rivers, in the eastern United States. All sites experienced pronounced impact to trees, groundcover vegetation, and soils. The nature and magnitude of impacts in these riparian forests were quite similar to those reported in wilderness areas in the mountainous western states and northern Minnesota, despite more favorable growing conditions. The relationship between amount of use and amount of impact and the importance of differences in type of use and environment were also roughly comparable. High-use sites were more heavily impacted than low-use sites, but differences were small when compared with differences in amount of use. The areal extent of impact was the major difference between sites in different environments and sites used by different clienteles. This suggests that the effectiveness of basic strategies for managing impact should not differ greatly between regions. Here, as elsewhere, actions taken to control the areal extent of impact appear to be particularly important.  相似文献   

14.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

15.
/ Heavy visitor use in many areas of the world have necessitated development of ways to assess visitation impacts. Arches National Park recently completed a Visitor Experience and Resource Protection (VERP) plan. Integral to this plan was developing a method to identify biological indicators that would both measure visitor impacts and response to management actions. The process used in Arches for indicator selection is outlined here as a model applicableto many areas facing similar challenges. The steps were: (1) Vegetation types most used by visitors were identified. Impacted and unimpacted areas in these types were sampled, comparing vegetation and soil factors. (2) Variables found to differ significantly between compared sites were used as potential indicators. (3) Site-specific criteria for indicators were developed, and potential indicators evaluated using these criteria. (4) Chosen indicators were further researched for ecological relevancy. (5) Final indicators were chosen, field tested, and monitoring sites designated. In Arches, indicators were chosen for monitoring annually (soil crust index, soil compaction, number of used social trails and soil aggregate stability) and every five years (vegetation cover and frequency; ground cover; soil chemistry; and plant tissue chemistry).KEY WORDS: Biological indicators; Recreation impacts; Recreation management; Desert soils; Trampling  相似文献   

16.
In northern Laos, intensification of cultivation on sloping land leads to accelerated erosion processes. Management of riparian land may counteract the negative impacts of higher sediment delivery rates on water quality. This study assessed water and sediment concentration trapping efficiencies of riparian vegetation in northern Laos and the effect of cultivation of riparian land on water quality. Runoff flowing in and out of selected riparian sites was monitored by means of open troughs. In 2005, two native grass, two bamboo, and two banana sites were monitored. In 2006, adjacent to steep banana, bamboo, and native grass sites, three upland rice sites were established and monitored. Water trapping efficiency (WTE) and sediment concentration trapping efficiency (SCTE) were calculated on an event basis; means and 95% confidence intervals (CIs) were estimated with a bootstrapping approach. Confidence intervals were large and overlapping among sites. Seepage conditions severely limited trapping efficiency. Native grass resulted in the highest WTE (95% CI, -0.10 to 0.23), which was not significantly different from zero. Banana resulted in the highest SCTE (95% CI, 0.06-0.40). Bamboo had negative WTE and SCTE. Median outflow runoff from rice sites was nine times the inflow. Median outflow sediment concentration from rice sites was two to five times that of their adjacent sites and two to five times the inflow sediment concentration. Although low-tillage banana plantation may reduce sediment concentration of runoff, cultivation of annual crops in riparian land leads to delivery of turbid runoff into the stream, thus severely affecting stream water quality.  相似文献   

17.
Benthic macroinvertebrate communities in streams adjacent to cornfields, streams where cows had unrestricted access, and reference locations without agriculture were compared to examine the effects of local land use and land use/land cover in the watershed. At each local site, macroinvertebrates and a variety of habitat parameters were measured upstream, adjacent, downstream, and farther downstream of the local land use. A geographic information system (GIS) was used to calculate drainage basin area, land use/land cover percentages in each basin, and the distance from sample sites to the stream source. Three‐way analysis of covariance (ANCOVA) tests with date, site type, and sampling location as main effects were used to explore differences in macroinvertebrate metrics using median substrate size, percent hay/pasture area, and stream depth as covariates. The covariates significantly improved model fit and showed that multiple contributing factors influence community composition. Local impacts were greatest at sites where cows had access, probably because of sedimentation and embeddedness in the substrate. Differences between the upstream and the adjacent and downstream locations were not as great as expected, perhaps because upstream recolonization was reduced by agricultural impacts or because of differences in the intensity or proximity of agriculture to riparian areas in the watershed. The results underscore the importance of both local and watershed factors in controlling stream community composition.  相似文献   

18.
The local impacts of industrial pollution can take many forms and—whilst uncertain in their scale, severity and distribution—are widely recognised. The question of who in society potentially experiences these impacts through living near to emission sources has been little explored, at least in the UK. This paper reports on a study carried out for the Environment Agency, which examined the distribution of sites coming within the Industrial Pollution Control (IPC) regime against patterns of deprivation. Our analysis provides evidence of a socially unequal distribution of IPC sites in England, with sites disproportionately located and clustered together in deprived areas and near to deprived populations. In discussing these results we emphasise the methodological limitations of this form of environmental justice analysis and the crucial differences between proximity, risk and impact. We also consider the distinction between inequality and injustice and the difficult policy questions which arise when evaluating evidence of environmental inequality, including potential grounds for policy intervention.  相似文献   

19.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

20.
The importance of developing evaluative standards for judging the acceptability of impacts caused by recreation is common to all recent natural resource management frameworks. A normative model has been advanced as a useful way to conceptualize, collect, and organize empirical data representing standards for resource management issues. This article summarizes the findings from social and ecological research to illustrate the utility of the normative approach from a manager's perspective. The social data (e.g., encounter norms, proximity norms, and tolerances for launch wait times) were obtained from 13 different study sites, while the ecological data (e.g., tolerances for the amount of bare ground, size of fire rings, instream flows, and wildlife management practices) were collected at three specific sites and from one statewide survey, Findings from the social research indicated that encounter norms exist for particular types of contacts with certain types of visitors at particular places and for certain types of experiences. The recreationists reported norms for acceptable distances between individuals, encounters with others at campsites or attractions, and waiting times to run rapids. These social norm evaluation techniques were also shown to be transferable to normative evaluations of ecological impacts. The users had opinions about ecological impacts and were willing to express them. In addition, the ecological norms were of moderate to high intensity. It is argued that the usefulness of normative approaches lies in their ability to characterize group agreement about appropriate use conditions or impact levels for a particular recreation experience, thus providing the evaluative information needed to establish management standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号