首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王梅  王智潇 《化工环保》2017,37(2):243-247
在分析铁矿石烧结烟气脱硫灰成分的基础上,利用脱硫灰中的亚硫酸盐还原废水中的Cr(Ⅵ),再加碱中和,通过沉淀去除铬。在初始废水pH 1.0、脱硫灰加入量0.06 g/mg(以Cr(Ⅵ)计)、振荡转速160 r/min、振荡时间25 min、中和pH 7.5的最佳工艺条件下处理模拟含铬废水,Cr(Ⅵ)质量浓度由10.00 mg/L降至0.18 mg/L,去除率达98.2%。最佳工艺条件下处理3种实际含铬废水,处理后出水的Cr(Ⅵ)和总铬的质量浓度及pH均满足GB 8978—1996《污水综合排放标准》。实现了对脱硫灰的综合利用、化害为利和以废治废的目标。  相似文献   

2.
《化工环保》2007,27(5):412-412
该发明公开了一种电石废水的处理方法。其处理方法:电石废水先进入反应槽,加入硫酸亚铁溶液反应后,用泵吸入水槽,通过管道泵进入管道混合器,在管道混合器中加入絮凝剂进行充分混合后,进入电石废水处理装置,出水进入监护池,在监护池中加入质量分数为5%的稀硫酸调节废水的pH,出水达到国家《污水综合排放标准》的一级排放标准,不达标时,废水排人装有活性炭的装置进行吸附处理,达标后排放。  相似文献   

3.
含铬(Ⅵ)废水治理新工艺   总被引:1,自引:0,他引:1  
探索用活性粉煤灰处理含铬(Ⅵ)废水新工艺,探讨在不同条件下处理含铬(Ⅵ)废水的效果。实验结果表明:在pH=2.00、铬(Ⅵ)含量为19.4mg·L-1,加入活性粉煤灰0.167L·g-1时,处理后水样中铬(Ⅵ)已检不出。同样在pH=1.50,铬(Ⅵ)含量为40.1mg·L-1,加入活性粉煤灰达0.0667L·g-1时,铬(Ⅵ)去除率可达100%。  相似文献   

4.
微生物法处理含铬(Ⅵ)废水的研究   总被引:12,自引:0,他引:12  
采用硫酸盐还原菌处理含铬(Ⅵ)废水,研究了其去除铬(Ⅵ)的最适宜工艺条件。实验表明,该菌的适用范围广,处理含铬废水的能力强。在菌液与废液体积比为1.0:1、铬(Ⅵ)质量浓度为150mg/L条件下处理36h,铬(Ⅵ)去除率达99.9%。  相似文献   

5.
硫酸亚铁-粉煤灰处理含铬废水   总被引:2,自引:0,他引:2  
本实验采用硫酸亚铁作为还原剂,将六价铬还原为三价铬。然后利用粉煤灰呈碱性,且具有较大比表面积及较好吸附能力的特点,作为化学法处理的沉淀剂和吸附剂,将三价铬以氢氧化铬的形式沉淀下来,通过理论推导与实验寻找了该方法的最佳条件。  相似文献   

6.
纪柱 《化工环保》1994,14(4):230-234
将铬酐废渣与铬酸钠碱性液同时投入盛有前次反应底液和少量磷酸的混合液中,使废渣中的三价铬与碱性液中的三价铝在晶种作用下形成致密易滤洗的磷酸盐沉淀而去除。这一新技术不但使铬渣回用于红矾钠生产,并使每吨铬酐产品增益1000多元。该技术业已工业化。  相似文献   

7.
含铬废水的处理方法虽多,但各有利弊。医药生产中,如激素、秦皮乙素、苯佐卡因、氨苯砜、布洛芬等制造过程,常用铬酐或红矾(重铬酸钠)作氧化剂参与反应,形成含铬废水,其浓度一般较高,主要为三价铬,也有反应剩余的六价铬。  相似文献   

8.
用钡渣处理含铬(Ⅵ)废水   总被引:3,自引:0,他引:3  
丁建础 《化工环保》2005,25(3):225-227
探索了用钡渣处理含铬(Ⅵ)废水的最佳实验条件,在废水pH小于6、钡渣与铬(Ⅵ)质量比为60~80、钡渣粒度为180~200目、反应时间为90min的条件下,废水中铬(Ⅵ)的去除率较高,钡渣对含铬(Ⅵ)废水的去除行为符合Langmuir等温方程。钡渣处理含铬(Ⅵ)废水的工业化应用试验表明,其工艺简单,操作方便,成本低。  相似文献   

9.
利用含铬废水和含铅废水制备铬黄   总被引:2,自引:1,他引:1  
利用净化后的含铬废水和含铅废水制备铬黄.采用沉淀法对废水进行净化预处理,最佳工艺条件:100mL含铬废水中加入20 g Na_2CO_3,及10 mL H_2O_2,用NaOH调节含铬废水pH为10.00;用NaOH调节含铅废水pH为2.65.将净化后的10 mL含铬废水和25 mL含铅废水混合,在55-60℃条件下反应10 min,合成的铬黄达到GB/T 3184-2008<铬酸铅颜料和钼铬酸铅颜料>的质量标准.经重金属吸附剂处理Pb~(2+)后铬黄合成滤液中的Cr~(6+)和Pb~(2+)质量浓度均达到GB8978-1996<污水综合排放标准>的指标.  相似文献   

10.
《化工环保》2006,26(6):509-509
该发明公开了一种废铬渣无害化处理工艺。将废铬渣40%~45%、粉煤灰10%~15%、锌窑渣10%~15%、赤泥28%~30%(均为质量分数)混合均匀,破碎至50~80目后送入烧结炉内,于1000~1100℃高温下进行还原烧结物化处理,烧结后的混合料冷却2~3h后用水浸泡20~26h,用滤布滤出渣料,滤液用FeSO4作还原剂,其加入量为废铬渣中Cr^6+含量的14~16倍,在滤液pH为8~8.5的条件下进行还原反应;将烧结过程产生的废气送至洗涤塔洗涤,产生的水蒸气排空。  相似文献   

11.
《化工环保》2007,27(1):11-11
该发明涉及一种从电镀废渣中回收有价金属的方法:(1)用稀酸将电镀废渣中的有价金属浸出,经过滤分离出酸浸渣和酸浸液;(2)在85~100℃用硫化物沉淀出酸浸液中的铜,经过滤分离出硫化铜和沉淀母液;(3)将质量分数5%~20%的碱溶液加入沉淀母液中,并控制溶液的pH为5.0~6.0,使溶液中的铬、铝沉淀,过滤分离出铬、铝渣及含铁、锌、  相似文献   

12.
《化工环保》2006,26(1):44-44
该废水处理设备由预反应槽、光化学反应池、药剂罐构成,并设有连接管道,药剂罐通过管道连接预反应槽,预反应槽设有管道连接光化学反应池,预反应槽上部有药剂添加孔、回流管、曝气孔,预反应槽下部设有出液管、排污管,光化学反应池由低压汞灯与中压汞灯串联,平行安装在光化学反应池内。利用近紫外光、氧化剂、还原剂的协同作用,使难降解的有机污染物分解,特别适用于农药、染料、石化、医药等行业产生的高浓度、难降解、有毒有机废水的处理。  相似文献   

13.
金皓 《化工环保》1989,9(4):210-213
文中介绍了无锡电影胶片厂应用石灰石膨胀塔中和处理醋酸废水的结果,并对不正常情况提出了改进措施,以提高生化处理效果。pH2—4的醋酸废水,以15—20吨/小时的水量、30—40米/小时的滤速,流经1.5—1.8米高度的滤料层(粒径为2—5毫米,含CaCO_3 95.2%),经石灰石中和处理后,废水pH可达6—6.5,满足了生化处理的要求。当进入生化系统的废水中Ca~(2+)低于300毫克/升时,有利于活性污泥的絮凝和沉降,可使二沉池出水的悬浮物减少,COD去除率相应提高。该法处理成本仅为液碱法的17.2%,一年可节约近3万元,且操怍简便,易于控制。  相似文献   

14.
《化工环保》2005,25(2):166-166
该发明涉及一种用酞菁绿废水制备聚合氯化铝铁絮凝剂的方法,其特征是:(1)首先,将酞菁绿废水用铁进行微电解,以置换酞菁绿废水中的铜离子,直至废水中的铜离子浓度达到或低于《低水综合排放标准GB8978—1996》的二级标准;(2)其次,将微电解后的酞菁绿废水过滤后进行浓缩;(3)搅拌浓缩后的微电解酞菁绿废水并加入咸化剂进行加热反应,调节酞菁绿废水呈弱酸性后,  相似文献   

15.
《化工环保》2005,25(3):253-254
该专利提供了一种用酞菁绿废水制备聚合氯化铝絮凝剂的方法。将335型弱碱性阴离子交换树脂放入吸附柱中,然后用稀盐酸流经吸附柱,再用水或去离子水清洗该树脂柱,然后用稀碱液处理该树脂吸附柱,最后用水或去离子水清洗该吸附柱直至出水呈弱碱性;调节酞菁绿废水的pH,使其在常温到50℃之间,通过上述预处理转型后的335型弱碱性阴离子交换树脂吸附柱,再经过另外一个离子交换树脂吸附柱,即可得到铜离子浓度达到《污水综合排放标准GB8978-1996》中二级标准的酞菁绿废水。将经上述树脂处理的酞菁绿废水浓缩,在搅拌加热的条件下,同时加人碱化剂进行反应,调节废水呈弱酸性,持续搅拌并进行加热反应,即得到该发明的液体产品或固体成品,335型弱碱性阴离子交换树脂还可脱附再生。  相似文献   

16.
《化工环保》2008,28(6)
该发明涉及一种利用零价铁-超声波协同作用对焦化废水进行脱色的方法。具体为将废水和零价铁屑/粉加入到反应器中,调节废水pH至1~6,而后在功率为150~200W的超声波作用下搅拌反应30~60min,实现废水脱色和COD的去除。零价铁的加入量为2~500g/L,反应温度为10~80℃。采用该发明可将焦化废水的色度由初始的1500倍降至140倍,色度去除率达90%以上;  相似文献   

17.
徐海林  童仕唐 《化工环保》2011,31(6):486-489
利用脱硫废碱液对酸化后的含铬废水进行处理,研究了废水初始pH、脱硫废碱液加入量和静置时间等对Cr(Ⅵ)转化率的影响.实验结果表明,在废水初始pH为1.4、静置时间为30 min的条件下,处理30 mL Cr(Ⅵ)质量浓度为126.5 mg/L的含铬废水,适宜的脱硫废碱液加入量为6 mL,此条件下Cr(Ⅵ)转化率接近10...  相似文献   

18.
余学  罗琳  李巧巧 《化工环保》2012,32(1):49-52
研究了采用焙烧—硫酸酸化法利用铬渣制备重铬酸钠的工艺.通过L16(44)正交实验得出铬渣焙烧—浸出的最佳工艺条件为:焙烧温度1 000℃,m(碳酸钠)∶m(铬渣)=0.18,液固比4,焙烧时间8h.在此条件下Cr(Ⅵ)回收率为99.3%.硫酸酸化制备重铬酸钠的最佳工艺条件为:浸出液pH为6.6,酸化液pH为3.5,浓缩液中重铬酸钠质量分数为83.1%.此条件下制备的产品重铬酸钠结晶率为44.5%,纯度为99.5%,符合GB1611-92《工业重铬酸钠》的一等品质量标准.处理1t铬渣可制备重铬酸钠约120 kg,增加收入660元.  相似文献   

19.
干法腈纶废水处理技术   总被引:2,自引:0,他引:2  
采用铁碳内电解-混凝沉淀预处理工艺处理干法腈纶废水。废水pH为4左右,经内电解反应2h,出水用聚合硫酸铁和阴离子型聚丙烯酰胺混凝沉淀1.5h后,废水的COD由1650mg/L降到1310mg/L,去除率为20.6%,BOD5/COD由原来的0.27提高到0.38。然后再采用水解酸化-好氧生化一生物硝化工艺处理预处理出水,最终出水COD为148mg/L,BOD,为16mg/L,氨氮质量浓度为13mg/L,SS质量浓度小于100mg/L,出水水质达到腈纶行业一级排放标准。  相似文献   

20.
化学沉淀法去除焦化废水中的氨氮   总被引:27,自引:3,他引:24  
采用化学沉淀剂MgCl2 ·6H2 O和Na2 HPO4·12H2 O(或MgHPO4·3H2 O)与焦化废水中的NH+ 4 反应 ,生成磷酸铵镁沉淀。探讨了不同操作条件对氨氮去除率的影响。在pH为 8 5~ 9 5的条件下 ,投加的药剂Mg2 + ∶NH+ 4 ∶PO3 -4(摩尔比 )为 1 4∶1∶0 8时 ,废水氨氮的去除率达 99%以上 ,出水氨氮的质量浓度由 2 0 0 0mg/L降至 15mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号