首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the influence of abatement efforts and other human activities on ozone levels is complicated by the atmosphere's changeable nature. Two statistical methods, the dynamic linear model (DLM) and the generalized additive model (GAM), are used to estimate ozone trends in the eastern United States and to adjust for meteorological effects. The techniques and resulting estimates are compared and contrasted for four monitoring locations chosen through principal components analysis to represent regional patterns of ozone concentrations. After adjustment for meteorological influence, overall downward trends are evident at all four locations from 1997 to 2004. The results indicate that the two methods’ estimates of ozone changes agree well. When such estimates are needed quickly, or when many similar, but separate analyses are required, the ease of implementation and relative simplicity of the GAMs are attractive. The DLMs are much more flexible, readily addressing such issues as autocorrelation, the presence of missing values, and estimation of long-term trends or cyclical patterns. Implementation of DLMs, however, is typically more difficult, and especially in the absence of an experienced practitioner, they may be better reserved for in-depth analyses.  相似文献   

2.
Evidence shows that the current national primary ambient air quality standard, if attained, would still permit substantial injury to vegetation. Thus, in March 1987, the California Air Resources Board (CARB) began consideration of the evidence for the effects of ozone (O3) on vegetation, and of several possible state ambient air quality standards designed to protect vegetation, especially crops, from O3 injury. In its review, the CARB addressed a number of issues relevant to such a standard. One issue considered by the CARB is the relationship of an ambient air quality standard to natural background levels of O3, which would greatly influence the practicality of attainment. Attainment of a standard close to natural background could entail excessive costs. Another issue considered is the occurrence of oxidants other than O3 that can damage vegetation. Throughout much of California, O3 accounts for over 90% of the oxidant air pollutants, and the CARB considered whether, in keeping with current practice, O3 should be used as a surrogate for total oxidant air pollutants. A major new piece of information presented to the CARB was an assessment of the economic effects of several potential standards. This assessment, produced by University of California scientists at Riverside and Davis, calculated the benefits of the potential standards in comparison to current O3 levels and estimated natural O3 background. This assessment was developed using field chamber response data, local crop data, and local O3 concentration data as inputs to the California Agricultural Resources Model, which accounts for both supply and demand effects. Because of California's varied climate, agricultural production occurs on a year-round basis, with overlapping growing seasons for many crops. Over long periods of time, O3 levels may vary markedly because of the influence of various factors, and a 1-h standard may not be an accurate indicator of growing season O3 exposure. A moving three-month averaging time has been proposed as a way to approximate the growing seasons of California's 200 crops. However, a sufficiently stringent 1-h standard would serve as a surrogate for a growing season standard. The CARB reviewed evidence supporting both long-term and short-term standards. Agriculture dominates the economies of some regions within California but is a minor components of other regional economies. Because the San Joaquin Valley is California's most important agricultural area, the CARB reviewed evidence for a regional standard for this area that would be more stringent than standards for other parts of the state.  相似文献   

3.
The current European critical levels for ozone (O3) to protect crops, natural and semi-natural vegetation and forest trees are based on a relative small number of open-top chamber experiments with a very limited number of plant species. Therefore, the working group "Effects of Ozone on Plants" of the Commission on Air Pollution Prevention of the Association of German Engineers and the German Institute of Standardization reanalysed the literature on O3 effects on European plant species published between 1989 and 1999. An exposure-response relationship for wild plant species and agricultural crops could be derived from 30 experiments with more than 30 species and 90 data points; the relationship for conifer and deciduous trees is based on 20 experiments with nine species and 50 data points. From these relationships maximum O3 concentrations for different risk stages are deduced, below which the vegetation type is protected on the basis of the respective criteria. Because it is assumed that the fumigation concentrations reflect the O3 concentrations at the top of the canopy, i.e. the upper surface boundary of the quasi-laminar layer if the micrometeorological big-leaf approach is applied, the application of these maximum O3 concentrations requires the transformation of O3 concentrations measured at a reference height above the canopy to the effective phytotoxic concentrations at the top of the canopy. Thus, the approach described in this paper is a synthesis of the classical concept of toxicology of air pollutants (critical concentrations) and the more toxicological relevant dose concept.  相似文献   

4.
A photochemical trajectory model has been employed to calculate the maximum potential for ozone generation in air parcels passing over the U.K. during a photochemical pollution episode in April 1987. In all, 11 trajectories have been studied and the model results compared against an objective analysis of the integrated ozone generation based on the observations reported from the U.K. Department of the Environment ground level O3network. There is apparently good correlation between the observed O3formation and the model O3formation potential although the latter overestimates the former by a factor of about 2.8. The solar illumination conditions employed in the photochemical trajectory model may have caused this overestimation, since the model is formulated for O3control strategy assessment and simulates the ‘worst case’ situation likely to give the maximum potential for secondary pollutant formation. In addition to the model results for O3, a wide range of primary and secondary pollutant concentrations from the model were examined, together with the influence of precursor pollutant emissions.  相似文献   

5.
Only few studies have been conducted as yet which focus on the effects of rising tropospheric ozone levels on semi-natural vegetation under free-air conditions. A new technical approach was used to examine the response of calcareous grassland to ozone employing a chamberless fumigation system. Four different ozone regimes were applied (1-, 1.33-, 1.66- and 2-fold ambient air levels) with five replicates each. Ozone enrichment was carried out on circular plots of 2 m in diameter by a computer controlled exposure system. Transparent windscreens encircling each plot accelerated the mixing of ambient air and ozone released. Thus, the use of blowers could be avoided. The exposure system presented here is regarded as an appropriate technique for free-air trace gas enrichment on short vegetation avoiding microclimatic alterations known to affect plant growth and pollutant uptake. Furthermore, the chosen technical set-up was rather cost-effective. Hence, it enabled the establishment of a larger number of replications providing the basis for results of higher statistical power.  相似文献   

6.
7.
In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (gst) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed gst variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed gst variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O3 flux modelling, in terms of predictive performance.  相似文献   

8.
9.
This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.  相似文献   

10.
A critical examination of ozone mapping from a spatial-scale perspective   总被引:1,自引:0,他引:1  
Following the establishment of point measurements of ground-level ozone concentrations have been attempts by many researchers to develop ozone surfaces. This paper offers a critique of ozone-mapping endeavors, while also empirically exploring the operational scale of ground-level ozone. The following issues are discussed: aspects of spatial scale; the spatial complexity of ground-level ozone concentrations; and the problems of previous attempts at ozone mapping. Most ozone-mapping studies are beset with at least one of the following core problems: spatial-scale violations; an improper evaluation of surfaces; inaccurate surfaces; and the inappropriate use of surfaces in certain analyses. The major recommendations to researchers are to acknowledge spatial scale (especially operational scale), understand the prerequisites of surface-generating techniques, and to evaluate the resultant ozone surface properly.  相似文献   

11.
Lung function response to inhaled ozone at ambient air pollution levels is known to be a function of ozone concentration, exposure duration, and minute ventilation. Most data-driven exposure-response models address exposures under static condition (i.e., with a constant ozone concentration and exercise pattern). Such models are simplifications, as both ambient ozone concentrations and normal human activity patterns change with time. The purpose of this study was to develop a dynamic model of response with the advantages of a statistical model (a relatively simple structure with few parameters). A previously proposed mechanistic model for changes in specific airways resistance was adapted to describe the percent change in forced expiratory volume in one second (FEV1). This model was then reduced using the fit to three existing exposure-response data sets as criterion. The resulting model consists of a single linear differential equation together with an algebraic logistic equation. Under restricted static conditions the model reduces to a logistic model presented earlier by the authors.  相似文献   

12.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone.  相似文献   

13.
A hybrid nonlinear regression (NLR) model and a neural network (NN) model, each designed to forecast next-day maximum 1-hr average ground-level O3 concentrations in Louisville, KY, were compared for two O3 seasons--1998 and 1999. The model predictions were compared for the forecast mode, using forecasted meteorological data as input, and for the hindcast mode, using observed meteorological data as input. The two models performed nearly the same in the forecast mode. For the two seasons combined, the mean absolute forecast error was 12.5 ppb for the NLR model and 12.3 ppb for the NN model. The detection rate of 120 ppb threshold exceedances was 42% for each model in the forecast mode. In the hindcast mode, the NLR model performed marginally better than the NN model. The mean absolute hindcast error was 11.1 ppb for the NLR model and 12.9 ppb for the NN model. The hindcast detection rate was 92% for the NLR model and 75% for the NN model.  相似文献   

14.
The effects of ozone (O3) exposure under different water availabilities were studied in two Mediterranean tree species: Quercus ilex and Ceratonia siliqua. Plants were exposed to different O3 concentrations in open top chambers (charcoal-filtered air (CF), non-filtered air (NF)) and non-filtered air plus 40 ppbv of O3 ((7:00–17:00 solar time) (NF+)) during 2 years, and to different water regimes (IR, sample irrigation, and WS, reduced water dose to 50%) through the last of those 2 years. AOT40 in the NF+ treatment was 59265 ppbv h (from March 1999 to August 1999) while in the NF treatment, the AOT40 was 6727 ppbv h for the same period. AOT40 was always 0 in the CF treatment. WS plants presented lower stomatal conductances and net photosynthetic rates, and higher foliar N concentrations than IR plants in both species. The irrigation treatment did not change the response trends to ozone in Q. ilex, the most sensitive species to O3 ambient concentrations, but it changed those of C. siliqua, the least sensitive species, since its ozone-fumigated WS plants did not decrease their net photosynthetic rates nor their biomass accumulation as it happened to its ozone-fumigated IR plants. These results show interspecific variations in O3 sensitivity under different water availabilities.  相似文献   

15.
An attempt has been made in order to find a link between the Gaussian plume model and the K model under conditions of a height structured atmospheric boundary layer. The resulting set of equations connecting the Gaussian parameters to the K and u fields can be used to define a “modified” Gaussian plume model that is capable of modelling phenomena like trapping and fumigation of pollutants typical of situations with marked variations of the advection and dispersion fields with height.  相似文献   

16.
This research was motivated by the need to warn the population of Milwaukee, WI, on high-ozone days. A statistical model for the peak daily 1-hr ozone level is proposed. A Regression with Time Series Errors (RTSE) model, which includes a principal component (PC) trigger, is the basis for forecasting the peak daily 1-hr ozone level. The RTSE model, with a PC trigger, is first employed to estimate daily peak ozone measured at the University of Wisconsin, Milwaukee-North (UWM-N), during the 1991 ozone season. The RTSE model uses peak daily temperature, morning vector average wind direction, and the PC trigger as predictor variables. The PC trigger was designed to summarize atmospheric circumstances when peak ozone was greater than 100 parts per billion (ppb). It is verified that the RTSE model, with a PC trigger, significantly improves the prediction of peak daily ozone, particularly peak ozone greater than 100 ppb. In comparison with the RTSE model without the PC trigger, the RTSE model with a PC trigger raised the R2 from 0.680 to 0.809. It is suggested that the RTSE model, with the PC trigger, is an adequate statistical model that has the potential for real-time ozone forecasting.  相似文献   

17.
There is growing observational evidence that stratospheric OH concentrations are smaller than models have been predicting. Using very recent HOx reaction rate coefficient measurements in a two-dimensional photochemical model, results which support these observations are obtained. As a consequence of smaller OH concentrations, we show that perturbations of stratospheric ozone by NOx (SST emissions and nitrogen fertilizers) may be larger than expected, while perturbations due to added water vapor and chlorine (SSTs and chlorofiuoromethanes. respectively) may be smaller.  相似文献   

18.
Ozone uptake into plant leaves was measured in gas exchange chambers using a mass balance and a variable conductance approach. The variable conductance approach was found to more reliably measure ozone flux through stomata. Measurements using this approach were contrasted with estimates obtained by measuring stomatal conductance g(sw) and modeling ozone uptake using a diffusion equation, assuming a negligible ozone concentration in the substomatal cavity. Actual measurements of uptake were close, but slightly higher than modeled values, providing some support to the idea that substomatal ozone concentrations are close to zero. However, the difference between measured and modeled uptake values suggests either that (i) variable conductance approach measures more ozone uptake than caused by stomatal uptake alone or (ii) ozone conductance is underestimated.  相似文献   

19.
Saplings of two clones of European white birch (Betula pendula Roth) were exposed to three different ozone profiles resulting in same AOT40 value of 13–14 ppm h in a chamber experiment. The sensitive clone 5 and the more tolerant clone 2 were growing (1) under filtered air (=control), or (2) were exposed to 70 ppb ozone for 24 h d−1 (=profile 1), (3) to 100 ppb ozone for 12 h d−1 at 8:00–20:00 (=profile 2), or (4) to 200 ppb ozone for 4.5 h d−1 at 9:30–14:00 (=profile 3) for 20 d. The saplings were determined for growth, visible leaf injuries, stomatal conductance, and concentrations of Rubisco, chlorophyll and carotenoids. Growth responses and induction of visible foliar injuries under different ozone profiles were variable, resulting in 4–17% lower dry mass of shoot, 16–46% reduction in stem height increment and 11–43% increase in visible injuries in clone 5, which was accompanied by higher leaf turnover rate under profile 3 indicating compensation growth. In clone 2, ozone-induced responses ranged from slight stimulation in stem height growth to 13% decrease in dry mass of shoot and 2–16% increase in visible injuries. Daytime stomatal conductance rates were lowered by 14–54% in clone 5 and 9–74% in clone 2, depending on profile. The additional power-weighted analyses revealed that high peak concentrations and exposure shape were important for induction of visible injuries in both clones and reduction in stomatal conductance in clone 5, whereas growth reductions were rather related to total cumulative exposure. The results indicate that profile of ozone exposure, night-time stomatal conductance (24 h flux), and recovery time for defence and compensations reactions should not be ignored in plant response and ozone flux modelling.  相似文献   

20.
A Bayesian hierarchical regime switching model describing the spatial–temporal behavior of ozone (O3) within a domain covering Lake Michigan during spring–summer 1999 is developed. The model incorporates linkages between ozone and meteorology. It is specifically formulated to identify meteorological regimes conducive of high ozone levels and allow ozone behavior during these periods to be different from typical ozone behavior. The model is used to estimate or forecast spatial fields of O3 conditional on observed (or forecasted) meteorology including temperature, humidity, pressure, and wind speed and direction. The model is successful at forecasting the onset of periods of high ozone levels, but more work is needed to also accurately identify departures from these periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号