首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   

2.
Typical top-down regional assessments of CO2 storage feasibility are sufficient for determining the maximum volumetric capacity of deep saline aquifers. However, they do not reflect the regional economic feasibility of storage. This is controlled, in part, by the number and type of injection wells that are necessary to achieve regional CO2 storage goals. In contrast, the geomechanics-based assessment workflow that we present in this paper follows a bottom-up approach for evaluating regional deep saline aquifer CO2 storage feasibility. The CO2 storage capacity of an aquifer is a function of its porous volume as well as its CO2 injectivity. For a saline aquifer to be considered feasible in this assessment it must be able to store a specified amount of CO2 at a reasonable cost per ton of CO2. The proposed assessment workflow has seven steps that include (1) defining the storage project and goals, (2) characterizing the geology and developing a geomechanical model of the aquifer, (3) constructing 3D aquifer models, (4) simulating CO2 injection, (5,6) evaluating CO2 injection and storage feasibility (with and without injection well stimulation), and (7) determining whether it is economically feasible to proceed with the storage project. The workflow was applied to a case study of the Rose Run sandstone aquifer in the Eastern Ohio River Valley, USA. We found that it is feasible in this region to inject 113 Mt CO2/year for 30 years at an associated well cost of less than US $1.31/t CO2, but only if injectivity enhancement techniques such as hydraulic fracturing and injection induced micro-seismicity are implemented.  相似文献   

3.
Carbon dioxide sequestration in deep saline aquifers is a means of reducing anthropogenic atmospheric emissions of CO2. Among various mechanisms, CO2 can be trapped in saline aquifers by dissolution in the formation water. Vaporization of water occurs along with the dissolution of CO2. Vaporization can cause salt precipitation, which reduces porosity and impairs permeability of the reservoir in the vicinity of the wellbore, and can lead to reduction in injectivity. The amount of salt precipitation and the region in which it occurs may be important in CO2 storage operations if salt precipitation significantly reduces injectivity. Here we develop an analytical model, as a simple and efficient tool to predict the amount of salt precipitation over time and space. This model is particularly useful at high injection velocities, when viscous forces dominate.First, we develop a model which treats the vaporization of water and dissolution of CO2 in radial geometry. Next, the model is used to predict salt precipitation. The combined model is then extended to evaluate the effect of salt precipitation on permeability in terms of a time-dependent skin factor. Finally, the analytical model is corroborated by application to a specific problem with an available numerical solution, where a close agreement between the solutions is observed. We use the results to examine the effect of assumptions and approximations made in the development of the analytical solution. For cases studied, salt saturation was a few percent. The loss in injectivity depends on the degree of reduction of formation permeability with increased salt saturation. For permeability-reduction models considered in this work, the loss in injectivity was not severe. However, one limitation of the model is that it neglects capillary and gravity forces, and these forces might increase salt precipitation at the bottom of formation particularly when injection rate is low.  相似文献   

4.
The feasibility of monitoring CO2 migration in a saline aquifer at a depth of about 650 m with cross-hole and surface–downhole electrical resistivity tomography (ERT) is investigated at the CO2SINK test site close to Ketzin (Germany). The permanent vertical electrical resistivity array (VERA) consists of 45 electrodes (15 in the injection well Ktzi201 and 15 in each of the two observation wells Ktzi200 and Ktzi202), successfully placed on the electrically insulated casings, in the depth range of about 590–740 m with a spacing of about 10 m. The three Ketzin wells are arranged as perpendicular triangle with distances of 50 and 100 m.First synthetic modelling studies indicate an increase of the electrical resistivity of about 200% caused by CO2 injection, corresponding to a bulk CO2 saturation of 50%, which is in good agreement with laboratory studies. Finite difference inversion of field data delivers three-dimensional resistivity distributions between the wells which are consistent with the reservoir modelling studies.To increase the limited observation area provided by the cross-hole measurements, additional surface–downhole measurements were deployed. A main CO2 migration in SE–NW direction is deduced from surface to downhole resistivity experiments.The first cross-hole time-lapse results show that the resolution and the coverage of the electrode array in the Ketzin setting are sufficient to resolve the expected resistivity changes on the characteristic length scale of the electrode array. Significant resistivity changes could be measured, however, detailed information on the CO2 plume could not be resolved yet by VERA under the existing geological circumstances.  相似文献   

5.
Deep saline aquifers have large capacity for geological CO2 storage, but are generally not as well characterized as petroleum reservoirs. We here aim at quantifying effects of uncertain hydraulic parameters and uncertain stratigraphy on CO2 injectivity and migration, and provide a first feasibility study of pilot-scale CO2 injection into a multilayered saline aquifer system in southwest Scania, Sweden. Four main scenarios are developed, corresponding to different possible interpretations of available site data. Simulation results show that, on the one hand, stratigraphic uncertainty (presence/absence of a thin mudstone/claystone layer above the target storage formation) leads to large differences in predicted CO2 storage in the target formation at the end of the test (ranging between 11% and 98% of injected CO2 remaining), whereas other parameter uncertainty (in formation and cap rock permeabilities) has small impact. On the other hand, the latter has large impact on predicted injectivity, on which stratigraphic uncertainty has small impact. Salt precipitation at the border of the target storage formation affects CO2 injectivity for all considered scenarios and injection rates. At low injection rates, salt is deposited also within the formation, considerably reducing its availability for CO2 storage.  相似文献   

6.
Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such “closed” systems with impervious seals, or “semi-closed” systems with non-ideal (low permeability) seals, is different from that in “open” systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the “true” values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage–formation–seal systems of various geometric and hydrogeological properties.  相似文献   

7.
This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria that represented approximately 60% to 90% of the total cell number, with Proteobacteria and Firmicutes as the most abundant phyla comprising up to 47% and 45% of the entire population, respectively. Both the total cell counts as well as the counts of the specific physiological groups revealed quantitative and qualitative changes after CO2 arrival. Our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these atypical conditions.  相似文献   

8.
Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO2 geologic storage that predicts not only CO2 migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO2 injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO2 injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km × 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO2 was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO2 plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.  相似文献   

9.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

10.
The CO2SINK project in Ketzin represents a field laboratory for the storage of CO2 in a 650-m deep saline aquifer. The project is accompanied by a microbiological monitoring programme to characterise the composition and activity of the autochthonous microbial community in rock and brine samples and their changes in response to CO2 storage. A prerequisite of these studies is the acquisition of samples free of contamination from microorganisms and organic and inorganic components. Drilling mud and technical fluids are the main sources of contamination. This study describes the application of the fluorescent dye tracers fluorescein and rhodamine B as contamination controls for rock core and brine samples. Fluorescein was added to drilling mud that was used during the coring phase of the Ketzin wells Ktzi 200, 201 and 202. In addition, total organic carbon (TOC) concentrations, reflecting the carboxymethyl cellulose (CMC) component of the drilling mud, were determined to verify the tracer results. The fluorescence and TOC analyses revealed that drilling mud filtrate penetrated the outer 20 mm of mildly permeable sandstone cores. Rhodamine B was added to brines that were used to displace the drilling mud and to flush the wells after completion. The tracer monitoring during the discharge of drilling mud and displacement brines from the wells during hydraulic tests and nitrogen lifts enabled the quantification of reservoir fluid quality. After the production of 140–190 m3 (16–21 borehole volumes) of fluid, the drilling mud concentration was reduced to about 0.05%. The use of fluorescein emerged as a field-capable, sensitive and reliable method during the sampling of rock core and formation brine samples.  相似文献   

11.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   

12.
The injection of CO2 at the Ketzin storage site and the chemical detection of its arrival in the observation well allowed testing of different numerical simulation codes. ECLIPSE 100 (E100, black-oil simulator), ECLIPSE 300 (E300, compositional CO2STORE) and MUFTE-UG were used for predictive modelling applying a constant injection rate of 1 kg s?1 CO2 and for a history match applying the actual variable injection rate which ranged from 0 to 0.7 kg s?1 and averaged 0.23 kg s?1. The geological model applied, is based on all available geophysical and geological information and has been the same for all programs.The results of the constant injection regime show a good agreement among the programs with a discrepancy of 21–33% for the CO2 arrival times. However, it is determined from the comparison of the cumulative mass of CO2 at the time of CO2 arrival that the injection regime is an important factor for the accurate prediction of CO2 migration within a saline aquifer. Comparing the actual variable injection regime with the simulations applying a constant injection rate the results are relatively inaccurate.Regarding the actual variable injection regime, which was evaluated using all three simulators, the computational results show a good agreement with the data actually measured at the first observation well. Here, the calculated arrival times exceeded the actual ones by 8.1% (E100), 9.2% (E300) and 17.7% (MUFTE-UG).It can be concluded that irrespective of the deviations of the simulations, due to combinations of different codes and slight differences in input parameters, all three programs are well equipped to give a reliable estimate of the arrival of CO2. Deviations in the results mainly occur due to different input data and grid size choices done by the different modelling teams working independently of each other. Deviations of the simulations results compared to the actual CO2 arrival time result from uncertainties in the implementation of the geological model, which was set up based on well log data and analogue studies.  相似文献   

13.
Ultrasonic experiments were undertaken on CO2 flooded sandstone core samples, both synthetic sandstones and core plugs from the CRC1 CO2 injection well in the Otway Basin, Victoria, South Eastern. Australia. The aim of these laboratory tests was to investigate the effects of CO2 as a pore fluid on the seismo-acoustic response of the sandstone and ultimately to provide an indication of the sensitivity of time-lapse seismic imaging of the eventual CO2/CH4 plume in the Otway, Waarre C formation.The synthetic sandstones were manufactured using both a proprietary calcium in situ precipitation (CIPS) process and a silica cementing technique. Samples were tested in a computer controlled triaxial pressure cell where pore pressures can be controlled independently of the confining pressures. The pressure cell is equipped with ultrasonic transducers housed in the loading platens. Consequently, effective pressures equivalent to those expected in the reservoir can be applied while ultrasonic testing is undertaken. Both compressional, P and shear waves, S were recorded via a digital oscilloscope at a range of effective pressure steps. Pore pressures were varied from 4 MPa to 17 MPa to represent both the gaseous and liquid phase regions of the CO2 phase diagram. Similar experiments were conducted on core plugs from the Waarre C reservoir horizon obtained from the CRC1 injection well, but with an intervening brine-saturated step and in some cases with a CO2/CH4 mix of 80%/20% molar fraction which is representative of the field situation. However, the pore pressure in these experiments was held at 4 MPa. Finally, acoustic impedances and reflection coefficients were calculated for the reservoir using Gassmann theory and the implications for imaging the CO2 plume is discussed.  相似文献   

14.
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as an option for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure increases. The resulting overpressure may promote reactivation of sealed fractures or the creation of new ones in the caprock seal. This could lead to escape routes for CO2. In order to assess the probability of such an event, we model an axisymmetric horizontal aquifer–caprock system, including hydromechanical coupling. We study the failure mechanisms, using a viscoplastic approach. Simulations illustrate that, depending on boundary conditions, the least favorable moment takes place at the beginning of injection. Initially, fluid pressure rises sharply because of a reduction in permeability due to desaturation. Once CO2 fills the pores in the vicinity of the injection well and a capillary fringe is fully developed, the less viscous CO2 displaces the brine and the capillary fringe laterally. The overpressure caused by the permeability reduction within the capillary fringe due to desaturation decreases with distance from the injection well. This results in a drop in fluid pressure buildup with time, which leads to a safer situation. Nevertheless, in the presence of low-permeability boundaries, fluid pressure continues to rise in the whole aquifer. This occurs when the radius of influence of the injection reaches the outer boundary. Thus, caprock integrity might be compromised in the long term.  相似文献   

15.
Permeability is one of the most important parameters for CO2 injection in coal to enhance coalbed methane recovery. Laboratory characterization of coal permeability provides useful information for in situ permeability behavior of coal seams when adsorbing gases such as CO2 are injected. In this study, a series of experiments have been conducted for coal samples using both non-adsorbing and adsorbing gases at various confining stresses and pore pressures. Our observations have showed that even under controlled stress conditions, coal permeability decreases with respect to pore pressure during the injection of adsorbing gases. In order to find out the causes of permeability decrease for adsorbing gases, a non-adsorbing gas (helium) is used to determine the effective stress coefficient. In these experiments using helium, the impact of gas sorption can be neglected and any permeability reduction is considered as due to the variation in the effective stress, which is controlled by the effective stress coefficient. The results show that the effective stress coefficient is pore pressure dependent and less than unity for the coal samples studied. The permeability reduction from helium experiments is then used to calibrate the subsequent flow-through experiments using adsorbing gases, CH4 and CO2. Through this calibration, the sole effect of sorption-induced strain on permeability change is obtained for these adsorbing gas flow-through experiments. In this paper, experimental results and analyses are reported including how the impact of effective stress coefficient is separated from that of the sorption-induced strain on the evolution of coal permeability.  相似文献   

16.
Idealized, basin-scale sharp-interface models of CO2 injection were constructed for the Illinois basin. Porosity and permeability were decreased with depth within the Mount Simon Formation. Eau Claire confining unit porosity and permeability were kept fixed. We used 726 injection wells located near 42 power plants to deliver 80 million metric tons of CO2/year. After 100 years of continuous injection, deviatoric fluid pressures varied between 5.6 and 18 MPa across central and southern part of the Illinois basin. Maximum deviatoric pressure reached about 50% of lithostatic levels to the south. The pressure disturbance (>0.03 MPa) propagated 10–25 km away from the injection wells resulting in significant well–well pressure interference. These findings are consistent with single-phase analytical solutions of injection. The radial footprint of the CO2 plume at each well was only 0.5–2 km after 100 years of injection. Net lateral brine displacement was insignificant due to increasing radial distance from injection well and leakage across the Eau Claire confining unit. On geologic time scales CO2 would migrate northward at a rate of about 6 m/1000 years. Because of paleo-seismic events in this region (M5.5–M7.5), care should be taken to avoid high pore pressures in the southern Illinois basin.  相似文献   

17.
Numerical modelling of multiphase flow is an essential tool to ensure the viability of long-term and safe CO2 storage in geological formations. Uncertainties arising from the heterogeneity of the formation and lack of knowledge of formation properties need to be assessed in order to create a model that can reproduce the data available from monitoring. In this study, we investigated the impact of unknown spatial variability in the petrophysical properties within a sandy channel facies of a fluviatile storage formation using stochastic methods in a Monte Carlo approach. The stochastic method has been applied to the Ketzin test site (CO2SINK), and demonstrates that the deterministic homogeneous model satisfactorily predicts the first CO2 arrival time at the Ketzin site. The equivalent permeability was adjusted to the injection pressure and is in good agreement with the hydraulic test. It has been shown that with increasing small-scale heterogeneity, the sharpness of the CO2 front decreases and a greater volume of the reservoir is affected, which is also seen in an increased amount of dissolved CO2. Increased anisotropy creates fingering effects, which result in higher probabilities for earlier arrival times. Generally, injectivity decreases with increasing heterogeneity.  相似文献   

18.
Elevated levels of CO2 in the atmosphere have been linked to the rise in land and sea temperature [Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D. (Eds.), The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK, p. 944]. To demonstrate geological carbon sequestration as a mitigation technique, a carbon dioxide injection experiment was conducted in East Texas. The target – Frio formation – is a highly porous, permeable and unconsolidated sandstone. The specific interval is the Frio C sand, which originally was saturated with saline formation water. At the injection location, the Frio C sand dips 18° to the south. To monitor the injected CO2 spreading in the formation, an old well from 1956 drilled into the deeper Yegua formation was selected as the observation well. The injection well was drilled at a distance of 100 ft downdip from the monitoring well. Several borehole measurement methods were available to monitor the CO2 injection, but the most suitable technology was thought to be the pulsed neutron logging. This logging is used widely in cased hole, and the measured macroscopic thermal absorption cross-section (Σ) is sensitive to CO2 saturation in high porosity saline water environments. Several log examples are given demonstrating successful the monitoring of the CO2 plume moving through the two boreholes and the resulting saturation changes.  相似文献   

19.
Carbon dioxide capture and storage (CCS) technology is gaining credibility as the best short to medium term solution for significantly reducing net carbon emissions into the atmosphere. From a capacity point of view, deep saline aquifers offer the greatest potential for CO2 storage. In this respect, well injectivity is considered a key technical and economical issue. Rock/fluid interactions – dissolution/precipitation of minerals, in particular carbonates – are currently considered as one of the principal reasons for wellbore injectivity changes in aquifers.This research investigated the mechanisms involved in injectivity losses through experimental and theoretical methods. The impact on injectivity of permeability changes occurring at various distances from the wellbore was studied using an idealised CO2 injection well flow model. A new experimental set-up was used to investigate the effect on dissolution/precipitation mechanisms of the pressure and temperature changes that the fluid is subjected to as it advances from the wellbore.Numerical modelling of the injection wellbore has shown that changes in the petrophysical properties of the reservoir several metres away from the wellbore can still have a significant impact on injectivity. As indicated by the experimental research carried out, pressure and temperature gradients that exist inside the reservoirs may lead to re-precipitation in the far field, however no significant permeability and porosity changes were detected to suggest major losses of injectivity due to these effects.  相似文献   

20.
Capturing and storing carbon dioxide (CO2) underground for thousands of years is one way to reduce atmospheric greenhouse gases, often associated with global warming. Leakage through wells is one of the major issues when storing CO2 in depleted oil or gas reservoirs. CO2-injection candidates may be new wells, or old wells that are active, closed or abandoned. In all cases, it is critical to ensure that the long-term integrity of the storage wells is not compromised. The loss of well integrity may often be explained by the geochemical alteration of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO2-related wells. However, even before any chemical degradation, changes in downhole conditions due to supercritical CO2 injections can also be responsible for cement debonding from the casing and/or from the formation, leading to rapid CO2 leakage. A new cement with better CO2 resistance is compared with conventional cement using experimental procedure and methodology simulating the interaction of set cement with injected, supercritical CO2 under downhole conditions. Geochemical experimental data and a mechanical modeling approach are presented. The use of adding expanding property to this new cement to avoid microannulus development during the CO2 injection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号