首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究基于多通道密闭式动态箱法对亚热带典型养殖塘CH4通量的时空变化特征及其影响因素进行了分析.结果表明:亚热带养殖塘CH4主要排放方式是冒泡,CH4扩散及冒泡通量均呈现明显的季节变化特征.春、夏、秋、冬4个季节CH4扩散通量分别为:0.113,0.830,0.002,0.005μmol/(m2·s),冒泡通量分别为0.923,1.789,0.006,0.007μmol/(m2·s),冒泡通量占总通量的比例分别为89.04%、68.29%、78.95%和60.52%.在冬、春季养殖塘没有人工管理措施的情况下,CH4通量随着离岸距离的增加而增大,冬、春季养殖塘中间区域CH4总通量分别是岸边浅水区的34.70和2.98倍.夏季养殖活跃期CH4通量在空间上呈现出:人工投食区(7.371μmol/(m2·s))>自然生长区(2.151μmol/(m2·s))>人工增氧区(0.888μmol/(m2·s))>岸边浅水区(0.206μmol/(m2·s))的特征.在0.5h尺度上,春季CH4扩散通量与水温呈显著正相关关系,与风速呈负相关关系,秋季CH4扩散通量与水温、风速呈正相关关系,冒泡通量和水温呈正相关关系.在日尺度上,水温是CH4扩散通量和冒泡通量的主控因子,两者均随着水温升高呈指数增加,并且冒泡通量的水温敏感性Q10(12.72)大于扩散通量(7.78).  相似文献   

2.
时元智  崔远来  才硕  洪大林  程婕 《环境科学》2023,44(3):1572-1582
稻田是一个既排放CH4又吸收CO2的复杂生态系统,在全球水碳循环和碳收支中发挥着重要作用.利用涡度相关法得到2020年鄱阳湖平原双季直播稻田的CH4和CO2通量,定量揭示了稻田碳通量变化特征、累积量和2种温室气体的综合温室效应.结果表明,双季直播稻田为CH4排放源,全生育期排放量为52.6 g·m-2,日均排放0.208 g·(m2·d)-1. CH4通量具有明显的季节变化特征,强排放期(排放峰)集中在早稻生长中期和晚稻生长前期,早稻85.5%和晚稻92.1%的CH4在强排放期被释放,日尺度峰值分别为0.638 g·(m2·d)-1和1.282 g·(m2·d)-1.CH4通量日变化呈显著单峰型、不显著单峰型和无规律型,强排放期主要为单峰型,该型式下早稻季峰值0...  相似文献   

3.
冒泡是甲烷排放的主要途径之一,为量化太湖藻型湖区CH4冒泡通量及其占总通量的比例,本研究采用静态箱-便携式温室气体自动分析仪方法对春、夏季太湖梅梁湾进行了多日连续观测.结果表明,太湖藻型湖区春、夏季CH4冒泡通量均存在白天高于夜间的日变化特征.春、夏季CH4冒泡通量分别为1.843、104.497nmol/(m2·s),占总通量的比例分别为31.2%和68.6%,即冒泡是夏季CH4排放的主要方式,而春季CH4排放则以扩散为主.在小时及日尺度上,CH4冒泡通量与温度(气温、表面水温和底泥温度)和气压显著相关,且随着温度升高、气压降低,CH4冒泡排放分别呈指数增加和线性增加趋势.本研究可为准确估算太湖流域CH4总排放量及明确我国湖泊对全球碳循环的贡献提供重要的基础数据.  相似文献   

4.
基于规模化人工湿地工程——武河湿地的野外原位监测试验,采用静态箱-气相色谱法研究了人工湿地中温室气体(N2O、CH4和CO2)释放特征与规律. 结果表明,武河湿地工程的N2O和CH4平均释放通量分别为14.35和35.54 mg/(m2·d),表现为N2O、CH4的释放源,但其释放通量低于城市污水处理厂;湿地(主要包括水体和土壤生物呼吸)的CO2平均释放通量为2 889.4 mg/(m2·d). 人工湿地沿程N2O、CH4和CO2释放特征有所不同,平均释放通量呈先升后降规律,在布水渠处N2O释放通量最大,为51.92 mg/(m2·d);而6#溢流堰处CH4释放通量最大,为182.03 mg/(m2·d). 人工湿地中温室气体释放亦具有明显的季节变化规律,表现为春夏季高于秋冬季.   相似文献   

5.
本文通过人为添加氮磷模拟水体富营养化,选用常见水生植物设置5个植物净化处理,研究水生植物在净化富营养化水体的过程中,温室气体(CO2、CH4、N2O)的排放特征以及影响因素.结果表明:5个处理的水-气界面CO2排放通量在19.12~395.19mg/(m2·h)之间,呈现先降后升的变化趋势.5个处理的水-气界面CH4、N2O排放通量在0.009~0.96mg/(m2·h)、0.024~6.48mg/(m2·h)之间,均呈现先升后降再升的变化趋势.多元逐步回归方程结果表明,底泥溶解性有机碳(DOC)、底泥氨氮(NH4+-N)、水体pH值、水体溶解氧(DO)、水体叶绿素a(Chl.a)共同影响着水-气界面CO2、CH4、N2O排放通量,其中底泥溶解性有机碳(DOC)对水-气界面CO  相似文献   

6.
养殖塘CH4排放特征及其影响因素   总被引:2,自引:1,他引:2  
王娇  肖薇  张秀芳  张弥  张文庆  刘强  陈争  董保华  李旭辉 《环境科学》2019,40(12):5503-5514
富营养化的养殖塘是重要的甲烷(CH_4)排放源.为明确养殖塘CH_4排放特征及其影响因素,本研究利用倒置漏斗法和体积扩散模型法,分别对安徽全椒两个养殖塘冬、春季CH_4冒泡通量和扩散通量进行了多日连续观测.结果表明,冬季CH_4冒泡通量白天高于夜间,夜间几乎为零;春季夜间高于白天.在季节尺度上,冬季CH_4冒泡通量显著低于春季,分别为3. 92mg·(m~2·d)-1和106. 94 mg·(m~2·d)-1;冬季CH_4扩散通量略高于春季,分别为2. 81 mg·(m~2·d)-1和0. 87 mg·(m~2·d)-1.自然因素(水温和气压)与CH_4冒泡通量和扩散通量显著相关.其中随水温的升高、气压的降低,CH_4冒泡通量分别呈指数递增和线性递增趋势.人工管理措施(冬季排水和春季施粪)会显著提高CH_4冒泡通量,但对扩散通量的影响并不显著.在冬季排水期间,水深与CH_4冒泡通量显著负相关;在春季鸡粪投放点,CH_4冒泡通量可高达1002. 30 mg·(m~2·d)-1.本研究可为评估小型养殖塘对全球碳循环的贡献提供数据支撑.  相似文献   

7.
为了更好的认识不同富营养化区域甲烷(CH4)排放通量及途径的时空异质性,本文以我国典型富营养化浅水湖泊-巢湖为研究对象,设置西北湖湾、西湖心和中湖心3个研究点位,采用漂浮通量箱和经验模型分析等方法对其水-气界面CH4排放通量与途径进行季节性研究.结果表明水体与沉积物中CH4溶存浓度、水-气界面CH4排放通量同水体营养盐水平及叶绿素a含量的空间变化相一致,且均表现为西北湖湾最高,其水体CH4溶存浓度为(0.178 ±0.002)~(1.123 ±0.026)μmol/L、表层沉积物中CH4含量为(70.5 ±30.7)~(189 ±97.0)μmol/L、CH4总排放通量为(50.1 ±2.93)~(1232 ±28.6)μmol/(m2·h);3个点位的CH4扩散通量占总排放量的7.3%~42.9%,冒泡通量占57.1%~92.7%,富营养化程度最高的西北湖湾冒泡通量占比最高;CH4排放通量大小与途径同时受季节变化影响,夏季CH4冒泡与总排放通量均最高,其中冒泡对总通量的贡献高达98.1%.  相似文献   

8.
本文基于中国境内的湖泊、水库、河流等淡水系统CH4排放研究的相关成果,对203个湖泊(595个样点)、46个水库(221个样点)、112条河流(441个样点),总计1257个样点的CH4通量数据进行统计分析,探讨了中国淡水系统(湖泊、水库、河流)CH4排放的一般特征,总结了当前研究进展,并进一步估算和评估了中国淡水系统CH4排放总量水平.结果表明:1)中国湖泊CH4排放通量平均为(1.17±1.87) mg/(m2·h),蒙新湖区((3.84±0.57) mg/(m2·h))和东北湖区((2.62±3.54) mg/(m2·h))较高,青藏湖区((1.94±4.13) mg/(m2·h))次之,东部湖区((0.81±0.90) mg/(m2·h))较低,云贵湖区((0.19±0.26) mg/(m2·h))最低;湖泊CH4排放通量呈显著的纬度模式,高纬度地区湖泊CH4排放高于低纬度地区;2)水库CH4排放通量((1.25±1.78) mg/(m2·h))与湖泊相似,水库消落带较高的排放通量((4.34±4.45)mg/(m2·h))对水库CH4排放具有重要贡献;3)河流CH4排放((0.82±1.14) mg/(m2·h))略低于湖库,长江水系CH4排放通量((0.98±2.38) mg/(m2·h))和黄河水系((0.85±0.75) mg/(m2·h))相近,高于海河水系((0.54±0.93) mg/(m2·h)),辽河、珠江水系研究较少,数据变异性极大;4)受降水、温度、径流稀释等影响,淡水系统CH4排放呈显著的季节变化,其中湖库排放夏季高于秋季,冬春季较低,而河流则春秋季高于夏冬季;5)基于外推法估算全国湖泊、水库、河流CH4排放总量分别约为0.96,0.29,0.76Tg/a,相当于全国湿地系统排放的75%.由于较大的时空变异性以及监测数据分布的不均匀性,目前估算存在较大的不确定性,但淡水系统CH4排放在全球气候变化中的贡献仍不容小觑.  相似文献   

9.
本文基于2022年5月现场调查,研究了北黄海辽东半岛东部邻近海域溶解甲烷(CH4)的分布、影响因素及海-气交换通量。结果表明,该海域溶解CH4浓度为3.2~11.2 nmol/L,饱和度为103%~364%,高值区位于鸭绿江口近岸海域,随着河口向海延伸,表层海水溶解CH4浓度逐渐减小,而底层海水溶解CH4浓度升高;鸭绿江冲淡水的输入致使近岸海域溶解CH4浓度显著升高,而沉积物有机质降解使得离岸海域底层海水溶解CH4浓度升高;该海域海-气CH4交换通量为0.7~61.1μmol/(m2·d),是大气CH4的源,近岸海域显著高于离岸海域。鸭绿江冲淡水的输入即使在平水期(5月)已经对邻近海域溶解CH4的影响非常显著,因此,河口等近岸海域海-气CH4交换通量的研究对于评估我国陆架边缘海对大气CH4的贡献至关重要。  相似文献   

10.
小型池塘水-气界面CH4冒泡通量的观测   总被引:3,自引:2,他引:1  
为了量化亚热带浅水养殖塘CH_4冒泡通量占CH_4总通量的比例,选取安徽省全椒县两个小型池塘为研究对象,采用倒置漏斗法和顶空平衡法,自2016年7月28日至8月13日观测夏季水-气界面的CH_4通量.结果表明,两个池塘CH_4冒泡通量分别是121.78 mg·(m~2·d)~(-1)和161.08 mg·(m~2·d)~(-1),CH_4扩散通量分别是3.38 mg·(m~2·d)~(-1)和3.79 mg·(m~2·d)~(-1),CH_4冒泡通量占总通量比例分别是97.5%和96.4%.CH_4冒泡通量具有高度空间异质性,A塘CH_4冒泡通量的变化范围为0.11~446.90 mg·(m~2·d)~(-1),B塘CH_4冒泡通量变化范围为0.05~607.51 mg·(m~2·d)~(-1).两个池塘的气体冒泡速率都是白天高于夜间,主要受风速控制.对于较浅的池塘,在小时尺度上,CH_4冒泡通量的主要影响因素是风速;在日尺度上,CH_4冒泡通量的主要影响因素是风速和水深,其中CH_4冒泡通量与风速呈正相关关系,与水深呈负相关关系.不同纬度的水体CH_4冒泡通量不同,中纬度地区的淡水环境比高纬度地区CH_4冒泡通量更高.通过观测手段量化小型浅水池塘CH_4冒泡通量,可以为准确估算内陆水体对区域和全球碳循环的贡献提供数据支持和理论参考.  相似文献   

11.
为了解东洞庭湖水域的碳汇特征,于2022年4月涨水期对东洞庭湖区域进行调查采样,并同步监测关键环境因子.运用垂向归纳模型和薄边界层法分别研究了东洞庭湖涨水期浮游植物的初级生产力以及水-气界面CO2和CH4的交换通量,基于碳收支关系计算水域净碳汇通量并分析其影响因素.结果表明:东洞庭湖涨水期水域碳汇能力存在空间差异性,总体表现出碳源的特征.湖区出口、城陵矶、岳阳楼、扁山、鹿角、湖中岛、蝴蝶口、大小西湖、六门闸上游、红星洲净碳汇通量为负值,表现为碳源,通量波动范围为-4.92~-0.17(mmol/(m2·h)),平均值为-1.95mmol/(m2·h);东湖区、六门闸下游净碳汇通量为正值,表现为碳汇,通量波动范围为1.10~2.24(mmol/(m2·h)),平均值为1.67mmol/(m2·h).东洞庭湖水域的净碳汇通量(NPP)主要受CO2通量(FCO2)、CO2分压...  相似文献   

12.
建立3块标准样地(天然沼泽、1990s和1970s排水沼泽),于2014年生长季期间,采用静态箱-快速温室气体分析仪野外原位观测CO2和CH4排放通量.结果表明:沼泽排水增加了土壤温度(5,20,45cm),但降低沼泽水位;1990s[(680±329)mg CO2/(m2·h)]和1970s排水沼泽[(973±234)mg CO2/(m2·h)]生态系统CO2排放通量分别较天然沼泽增加了200%和330%,但CH4排放通量[(0.78±0.52)mg CH4/(m2·h)]和[(-0.01±0.02)mg CH4/(m2·h)]较天然沼泽分别降低了90%和100%;综合考虑两者排放通量,1990s[(186±89)mg C/(m2·h)]和1970s排水沼泽[(265±64)mg C/(m2·h)]生态系统碳(C)排放通量较天然沼泽分别增加了180%和300%.天然沼泽、1990s和1970s排水沼泽生态系统CO2排放通量与5cm土壤温度存在显著正相关,而仅1990s排水沼泽生态系统CO2排放通量与水位存在显著负相关.天然沼泽生态系统CH4排放通量与土壤温度(5,20,45cm)存在显著正相关,但1970s排水沼泽生态系统CH4排放通量与土壤温度(20,45cm)存在显著负相关,1990s排水沼泽生态系统CH4排放通量与水位存在显著正相关.沼泽排水显著增加了若尔盖高寒沼泽生态系统C排放通量,降低了沼泽C汇功能,可能增强区域气候变暖.  相似文献   

13.
生活垃圾填埋场春夏季CH4释放及影响因素   总被引:4,自引:1,他引:3  
采用静态箱法监测了2个生活垃圾填埋场春、夏季及昼夜的CH4释放通量,并分析了影响CH4释放的相关因素. 结果表明:填埋气体(LFG)主动收集对填埋场CH4释放的影响显著. 在填埋龄相近的条件(4.0~4.5年)下,无LFG主动收集的填埋场春、夏季CH4的释放通量(以CH4计)平均值〔(541±1 005) mg/(m2·h)〕比有LFG主动收集的填埋场提高4.4倍. 在有LFG主动收集的填埋场内,填埋龄为1.0~1.5年的非渗滤液灌溉区的CH4释放通量均值〔(324±847)mg/(m2·h)〕为灌溉区的10.0倍左右. 在有LFG主动收集的填埋场内,CH4释放通量与各环境因子间无显著相关;而在无LFG主动收集的填埋场内,CH4释放通量分别与覆土温度和气温呈显著正相关,与大气压强呈显著负相关.相关性分析结果表明,CH4释放通量与填埋场覆土中含水率,w(有机碳)和w(总氮)呈显著正相关.   相似文献   

14.
崇明东滩芦苇湿地温室气体排放通量及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
通过静态箱-气相色谱法对崇明东滩芦苇群落在生长周期内的3种温室气体——CH4、N2O和CO2的排放、吸收特征进行研究. 结果表明:芦苇群落湿地CH4排放通量受温度影响较大,夏季排放通量明显高于其他季节,年均排放通量为74.46μg/(m2·h);N2O年均排放通量为2.22μg/(m2·h),冬季排放通量最大;CO2的吸收率季节变化明显,年均排放通量为-101.93mg/(m2·h). 温度、芦苇植株光合作用及呼吸作用是影响CH4产生和排放的主要因素;而沉积物氮素不足和限制,则是促使芦苇群落表现出对N2O吸收的原因;芦苇的光合作用及土壤呼吸作用随温度和季节的变化是控制芦苇湿地CO2的排放和吸收的主要因素. 芦苇植株发达的通气组织是CH4和N2O由大气向沉积物扩散的通道,同时分子扩散过程也是沉积物产生的CH4、N2O和CO2扩散到大气中的途径和方式.   相似文献   

15.
湖泊等水体CH4的排放是全球温室气体的主要组成部分,但目前对干旱区湖泊CH4扩散排放特征及其影响因素的研究却鲜有报道.本文选取干旱区典型湖泊—博斯腾湖为研究对象,分别于2021年6月、9月、10月采集水样,并测定其生物地球化学参数及溶解CH4浓度,确定其水-气界面CH4扩散排放通量.结果表明,博斯腾湖CH4扩散通量均值为(0.305±0.080)mmol·m-2·d-1,表现为大气CH4的排放源;在空间上,受外源输送影响,入湖河口为CH4的扩散排放热点区域;在不同月份,CH4扩散通量变化受营养状态影响显著,与综合富营养化指数、叶绿素a浓度等呈显著正相关(富营养化指数:r=0.67,p<0.01;叶绿素a:r=0.54,p<0.01),但其对温度的依赖性较低(p>0.05).另外,受外源输送、水动力特征、内部生物化学过程等影响,博斯腾湖CH4<...  相似文献   

16.
为了探讨河滨修复湿地在不同条件下CH4的排放规律及降低CH4排放的调控途径,以自行设计和建造的河滨湿地为研究对象,对植物种类配置及植株密度进行人为调控,运用静态箱-气相色谱法测定CH4排放通量. 结果表明:①CH4排放通量具有明显的季节性变化规律,其中夏季最大,占全年CH4总排放量的50%以上;冬季最小,低于全年CH4总排放量的5%. ②植物种植会明显增加CH4的排放,不同植物类型通过改变w(SOC)(SOC为土壤有机碳)、气体传输机制以及产CH4菌群落来改变湿地的CH4排放,4种供试植物中,通气组织较发达的芦苇和水葱湿地CH4排放通量分别为(1.98±0.78)和(1.41±0.58)mg/(m2·h),显著低于黄菖蒲的(6.77±1.92)mg/(m2·h). ③提高植株密度可以通过增加输气通道和提高w(SOC)来促进湿地CH4排放,黄菖蒲植株密度为150株/m2时,CH4平均排放通量为(10.31±2.56)mg/(m2·h),比植株密度为56株/m2时高出近30%. 因此,建议在新建和修复河滨湿地的设计和建造过程中,种植芦苇和水葱等通气组织较发达的植物,并在满足湿地修复、生态环境保护和景观营造等要求的前提下,适当控制植株密度,以有效减少CH4排放.   相似文献   

17.
该研究利用温室气体观测卫星上的傅里叶变换光谱仪反演的CH4产品,结合瓦里关地面站点观测的CH4浓度数据对遥感产品进行验证和校正,并基于校正后的数据分析了2010-2019年中国CH4时空变化特征及其影响因素。结果表明中国区域CH4柱浓度呈现明显的增长趋势,2010和2019年CH4柱浓度年均值分别为5.43和5.71 mg/m3,10年间增长了0.28 mg/m3,年均增长率为0.51%。同时,CH4柱浓度呈现12个月的周期变化,且存在明显的时空差异,月均最小和最大值分别出现在2月和9月,多年平均值分别约为(5.50±0.10)和(5.62±0.11) mg/m3,差值约为0.12 mg/m3,其中2019年2月和9月分别为5.64和5.78 mg/m3。多年平均CH4柱浓度值在5.47~5.68 mg/m3  相似文献   

18.
盐度对河口湿地甲烷气体的产生与排放影响重大。为揭示海水入侵对河口湿地CH4排放的影响,利用静态密闭箱—气相色谱法在2016年4~10月期间对崇明东滩芦苇群落CH4气体的排放通量进行测定。结果表明:CH4排放总体表现出春夏季较高,秋冬季较低的季节变化规律;排放通量在0.19~7.68 mg/(m2·h)间波动,4~10月这半年内平均排放通量为3.41 mg/(m2·h)。在一定范围内,较高的盐度抑制CH4的产生与排放,较低的盐度不足以对CH4产生抑制作用,甚至会促进CH4的产生;在高盐环境下,CH4排放通量与盐度呈现出显著的对数负相关关系。在芦苇群落生长旺盛的初期(4~6月),CH4排放通量与温度、光照呈现正相关关系;而在芦苇生长后期(7~10月)则呈现负相关关系。  相似文献   

19.
王延华  杨浩 《环境科学研究》2011,24(10):1136-1141
CH4(甲烷)的逸出量与产甲烷菌和甲烷氧化菌的数量密切相关.采用FISH(荧光原位杂交)技术定量解析芦苇和香蒲混栽土壤-植物生态系统基质,探讨CH4的产生机理.结果表明,植物有利于微生物的生长,甲烷氧化菌主要聚居在植物根区,产甲烷菌数量高于甲烷氧化菌.气温变化和系统ORP(氧化还原电位)对土壤-植物生态系统CH4排放通量的影响很大,芦苇和香蒲混栽土壤-植物生态系统CH4年均排放通量为22.9 mg/(m2·h),最高达185.6 mg/(m2·h),排放峰值出现在夏季.表明芦苇和香蒲的生长促进了根际分泌物的产生,为产甲烷菌提供了较多生长所需的底物,从而刺激系统CH4的排放.   相似文献   

20.
为认识西安市大气降水主要化学组分的现状,对2019年西安市市区和郊区大气降水样品的pH值、电导率、水溶性离子和重金属的质量浓度、湿沉降通量和来源进行了研究.结果表明,西安市冬季大气降水pH、电导率、水溶性离子和重金属浓度均高于其它季节.降水中主要的水溶性离子为Ca2+、 NH+4、 SO■和NO-3,其之和占总离子浓度的(88.5±2.8)%;市区和郊区主要重金属是Zn和Fe、 Zn和Mn,其之和分别占总金属浓度的(54.0%±3)%和(47.0%±8)%.市区和郊区降水中水溶性离子的湿沉降通量分别为(253.2±58.4)mg·(m2·month)-1和(241.9±61.1)mg·(m2·month)-1,呈现出冬季高于其他季节的特点;重金属的湿沉降通量分别为(86.2±37.5)mg·(m2·month)-1和(88.1±37.4)mg·(m...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号