共查询到17条相似文献,搜索用时 0 毫秒
1.
Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control 总被引:2,自引:0,他引:2
This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1000ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1000ppm as CH(4) from primary treatment facilities are less than US$0.1 for perm(3) wastewater treatment capacity. 相似文献
2.
This study analyses the general-equilibrium impacts of an international climate change response policy on the economy of Western Australia (WA), one of the most mining-based and energy-intensive states of Australia. It finds that emissions would fall by up to 11% from the base level in WA. However, such environmental benefits emanate at some costs to the state economy; in terms of foregone gross state product, the costs are up to 3% of the base level. Indeed, the actual costs and benefits depend on the precise design of the climate change response policy as well as on the other policies within which it operates. For example, when emission quota permits are sold to industries and no tradeable carbon credits (i.e. credits for the carbon sequestrated in Kyoto forests) are granted, emissions decline by about 8% and GSP falls by about 3% of the base levels. If carbon credits are tradeable, however, the environmental benefits could be increased and the GSP cost could be reduced substantially. Also, the reduced economic activity caused by emission abatement results in a modest fall in net government revenue, despite the additional revenue from permit sales in some cases. Accordingly, government’s fiscal package surrounding the emission permits would influence the emission abatement impacts on the economy. With regard to the effects on the structure of the state economy, the oil and gas industry suffers only a slight contraction but the energy-supplying sector as a whole contracts substantially. It is therefore not surprising that the impacts on the WA economy of curbing emissions by energy and transport industries alone are quite significant when compared to those resulted from all industries’ compliance with the abatement scheme. It needs to be noted that the model projections analysed in the paper are based on simplifying assumptions and tentative scenarios, and hence should be viewed with caution and not be understood as unconditional forecasts. 相似文献
3.
Climate change is one of the major worldwide environmental concerns. It is especially the case in many developed countries, where the greenhouse gas emissions responsible for this change are mainly concentrated. For the first time, the Kyoto Protocol includes an international agreement for the reduction of the net emissions of these gases. To fulfil this agreement measures designed to reduce or limit current emissions have to be brought into force. Consequently, fears have arisen about possible consequences on competitiveness and future development of manufacturing activities and the need for support mechanisms for the affected sectors is obvious. In this paper, we carry out a study of the emissions of gases responsible for climate change in Asturias (Spain), a region with an important economic presence of sectors with intensive emissions of CO(2), the chief greenhouse gas. To be precise, in the first place, the volumes of direct emissions of the said gases in 1995 were calculated, showing that the sectors most affected by the Kyoto Protocol in Asturias are iron and steel and electricity production. Secondly, input-output analysis was applied to determine the direct and indirect emissions and the direct, indirect and induced emissions of the different production sectors, respectively. The results derived from the direct and indirect emissions analysis and their comparison with the results of the former allow us to reach some conclusions and environmental policy implications. 相似文献
4.
An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control 总被引:2,自引:0,他引:2
Municipal solid waste (MSW) should be properly disposed in order to help protect environmental quality and human health, as well as to preserve natural resources. During MSW disposal processes, a large amount of greenhouse gas (GHG) is emitted, leading to a significant impact on climate change. In this study, an inexact dynamic optimization model (IDOM) is developed for MSW-management systems under uncertainty. It grounds upon conventional mixed-integer linear programming (MILP) approaches, and integrates GHG components into the modeling framework. Compared with the existing models, IDOM can not only deal with the complex tradeoff between system cost minimization and GHG-emission mitigation, but also provide optimal allocation strategies under various emission-control standards. A case study is then provided for demonstrating applicability of the developed model. The results indicate that desired waste-flow patterns with a minimized system cost and GHG-emission amount can be obtained. Of more importance, the IDOM solution is associated with over 5.5 million tonnes of TEC reduction, which is of significant economic implication for real implementations. Therefore, the proposed model could be regarded as a useful tool for realizing comprehensive MSW management with regard to mitigating climate-change impacts. 相似文献
5.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling. 相似文献
6.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis. 相似文献
7.
本文对发改委颁布的(《温室气体自愿减排交易管理暂行办法》进行了解读、分析其特点并指出尚需进一步解决的问题。 相似文献
8.
Hospital effluents are loaded with pathogenic microorganisms, partially metabolized pharmaceutical substances, radioactive elements, and other toxic substances. Such effluents if not treated properly can damage the natural environment and create a biological imbalance. This paper points out the areas of concern for hospital wastewater disposal and reports the findings of a limited physico-chemical study of treatment options for hospital effluents conducted at Christian Medical College and Hospital, Vellore, Tamil Nadu. The effluent collected was checked for conventional parameters and subjected to coagulation experiments. The raw and settled effluents were coagulated with FeCl(3), filtered and disinfected. Physico-chemical treatment seems to be an attractive option for the cost-effective disposal of hospital effluents. The results of this study call for further detailed study in this area. 相似文献
9.
Decentralized approaches to wastewater treatment and management: applicability in developing countries 总被引:6,自引:0,他引:6
Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area. 相似文献
10.
Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance 总被引:3,自引:0,他引:3
A reliable model for any wastewater treatment plant is essential in order to provide a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. This process is complex and attains a high degree of nonlinearity due to the presence of bio-organic constituents that are difficult to model using mechanistic approaches. Predicting the plant operational parameters using conventional experimental techniques is also a time consuming step and is an obstacle in the way of efficient control of such processes. In this work, an artificial neural network (ANN) black-box modeling approach was used to acquire the knowledge base of a real wastewater plant and then used as a process model. The study signifies that the ANNs are capable of capturing the plant operation characteristics with a good degree of accuracy. A computer model is developed that incorporates the trained ANN plant model. The developed program is implemented and validated using plant-scale data obtained from a local wastewater treatment plant, namely the Doha West wastewater treatment plant (WWTP). It is used as a valuable performance assessment tool for plant operators and decision makers. The ANN model provided accurate predictions of the effluent stream, in terms of biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) when using COD as an input in the crude supply stream. It can be said that the ANN predictions based on three crude supply inputs together, namely BOD, COD and TSS, resulted in better ANN predictions when using only one crude supply input. Graphical user interface representation of the ANN for the Doha West WWTP data is performed and presented. 相似文献
11.
Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants 总被引:1,自引:0,他引:1
This study was undertaken to investigate the removal of pathogenic microorganisms and their indicators in a laboratory scale biological treatment system that simulated the secondary treatment process of a wastewater treatment plant (WWTP). Four groups of microorganisms including bacteria, viruses, protozoa and helminths as well as the selected indicators were employed in the investigation. The results demonstrated that approximately 2-3 log10 removal of the microbial indicators was achieved in the treatment process. The log removal of Clostridium perfringens spores was low due to their irreversible adsorption to sludge flocs. The laboratory treatment system demonstrated a similar removal capability for Escherichia coli and the bacterial indicators (total coliforms, enterococci and particles <2.73 microm/L). The MS-2 bacteriophage, measured as a viral indicator, showed a lower removal than poliovirus, which may be considered as a worst case scenario for virus removal. The results of using particle profiling as an indicator for protozoa and helminths appeared to be inaccurate. The removal performance for bacterial and protozoan pathogens and their indicators in a full scale WWTP and the laboratory treatment system was compared. 相似文献
12.
Current “business as usual” projections suggest greenhouse gas emissions from industrialized nations will grow substantially
over the next decade. However, if it comes into force, the Kyoto Protocol will require industrialized nations to reduce emissions
to an average of 5% below 1990 levels in the 2008–2012 period. Taking early action to close this gap has a number of advantages.
It reduces the risks of passing thresholds that trigger climate change “surprises.” Early action also increases future generations'
ability to choose greater levels of climate protection, and it leads to faster reductions of other pollutants. From an economic
sense, early action is important because it allows shifts to less carbon-intensive technologies during the course of normal
capital stock turnover. Moreover, many options for emission reduction have negative costs, and thus are economically worthwhile,
because of paybacks in energy costs, healthcare costs, and other benefits. Finally, early emission reductions enhance the
probability of successful ratification and lower the risk of noncompliance with the protocol. We discuss policy approaches
for the period prior to 2008. Disadvantages of the current proposals for Credit for Early Action are the possibility of adverse
selection due to problematic baseline calculation methods as well as the distributionary impacts of allocating a part of the
emissions budget already before 2008. One simple policy without drawbacks is the so-called baseline protection, which removes
the disincentive to early action due to the expectation that businesses may, in the future, receive emission rights in proportion
to past emissions. It is particularly important to adopt policies that shift investment in long-lived capital stock towards
less carbon-intensive technologies and to encourage innovation and technology development that will reduce future compliance
costs. 相似文献
13.
Wastewater collection and treatment is quite important for sustainable management. It would be uneconomical and impractical to provide sewer systems and separate wastewater treatment plants (WWTP) for small communities. The decision process in wastewater planning is rather important in terms of comparing the alternatives considered. The two important points in the management of wastewater at rural areas not connected to a sewer system are to develop an optimized operation strategy and to make sure that the complete system is environmentally and economically sustainable. In some regions, package treatment could be an alternative solution. However, in cases where there is an existing large WWTP, a cluster system, where sewage generated by small communities could be transported via conveyors to a centralized WWTP, could be employed. In this study, the wastewater treatment and disposal problems in small communities were addressed and an alternative wastewater handling scenario was proposed. Additionally, three wastewater handling scenarios were compared. As a case study, Gebze villages were selected. 相似文献
14.
The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occur at this point due to the low pH. The increases in ammonium and pH during anaerobic digestion cause precipitation to take place mainly inside the digesters and in downstream processes. This study shows that 50.7% of the available phosphate is fixed in the digester of which 52.0% precipitates as ammonium struvite, 39.2% precipitates as hydroxyapatite and the remaining 8.8% is adsorbed on the surface of the solids. Thermodynamic calculations confirm the precipitation of struvite and hydroxyapatite and also confirm that potassium struvite does not precipitate in the anaerobic digesters. 相似文献
15.
Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan. Yet the optimal size of an industrial wastewater treatment plant could fall in between 6000 CMD and 20,000 CMD. 相似文献
16.
Manado is the largest and most densely populated coastal city in North Sulawesi Province, Indonesia. The city is facing problems of wastewater discharged from various sources. These problems are driven by high population pressure, increasing economic activity, and low household income, in combination with inadequate organizational structure of government institutions for addressing the wastewater problems as well as for law enforcement. There have been no community initiatives to prevent or mitigate wastewater problems. Therefore, a wastewater management plan is urgently needed to prevent and mitigate pollution caused by discharged wastewater. In this paper we analyze the current situation with respect to environmental state, sources and treatment of wastewater, socio-economic and institutional capacities as well as community awareness. Constraints and potentials are discussed to give recommendations for an integrated wastewater management plan for the city of Manado. 相似文献
17.
Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel 总被引:1,自引:0,他引:1
The effectiveness of sewage purification by aquatic plants, such as water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes), was tested on laboratory and pilot scales. Cascade and semi-continuous pilot experiments verified that the plants are capable of decreasing all tested indicators of water quality to levels that permit the use of the purified water for irrigation of tree crops. This applies to biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and turbidity. The laboratory-scale tests confirm the capacity of the plants to reach and hold reasonably low levels of BOD (5-7 mg L(-1)) and COD (40-50 mg L(-1)) and very low levels of TSS (3-5 mg L(-1)) and turbidity (1-2 NTU). In the experimental pilot setup, with circulation, COD decreased from 460 to 100 mg L(-1) after 2.5-4 days of treatment, while 6-7 days were required to this end without circulation. This doubled the active pond area and provided a two-level hydraulic loading (8 and 12 L min(-1)) with circulation that proved to be effective during the summer as well as the winter season. The outflow concentrations were 50-85 mg L(-1) of COD and 4-6 mg L(-1) of BOD. The results show that the use of this free water surface flow system (FWS) and its low maintenance system for treatment of urban and agricultural sewage is a viable option. 相似文献