首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most forest carbon assessments focus only on biomass carbon and assume that greenhouse gas (GHG) emissions from forestry activities are minimal. This study took an in-depth look at the direct and indirect emissions from Pacific Northwest (PNW) Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] forestry activities to support or deny this claim. Greenhouse gas budgets for 408 "management regimes" were calculated using Life Cycle Assessment (LCA) methodology. These management regimes were comprised of different combinations of three types of seedlings (P + 1, 1 + 1, and large plug), two types of site preparation (pile and burn, and chemical), 17 combinations of management intensity including fertilization, herbicide treatment, pre-commercial thinning (PCT), commercial thinning (CT), and nothing, and four different rotation ages (30, 40, 50, and 60 yr). Normalized to 50 yr, average direct GHG emissions were 8.6 megagrams (Mg) carbon dioxide equivalents (CO2e) ha(-1), which accounted for 84% of total GHG emissions from the average of 408 management regimes. Harvesting (PCT, CT, and clear cutting) contributed the most to total GHG emissions (5.9 Mg CO2e per 700 m3 harvested timber), followed by pile and burn site preparation (4.0 Mg CO2e ha(-1) or 32% of total GHG emissions) and then fertilization (1.9 Mg CO2e ha(-1) or 15% of total GHG emissions). Seedling production, seedling transportation, chemical site preparation, and herbicide treatment each contributed less than 1% of total GHG emissions when assessed per hectare of planted timberland. Total emissions per 100 m3 averaged 1.6 Mg CO2e ha(-1) over all 408 management regimes. An uncertainty analysis using Monte Carlo simulations revealed that there are significant differences between most alternative management regimes.  相似文献   

2.
Tropical deforestation is a significant contributor to accumulation of greenhouse gases (GHGs) in the atmosphere. GHG emissions from deforestation in the tropics were in the range of 1 to 2 Pg C yr(-1) for the 1990s, which is equivalent to as much as 25% of global anthropogenic GHG emissions. While there is growing interest in providing incentives to avoid deforestation and consequently reduce net carbon emissions, there is limited information available on the potential costs of these activities. This paper uses a global forestry and land use model to analyze the potential marginal costs of reducing net carbon emissions by avoiding deforestation in tropical countries. Our estimates suggest that about 0.1 Pg C yr(-1) of emissions reductions could be obtained over the next 30 to 50 yr for $5 per Mg C, and about 1.6 Pg C yr(-1) could be obtained over the same time frame for $100 per Mg C. In addition, the effects of carbon incentives on land use could be substantial. Relative to projected baseline conditions, we find that there would be around 3 million additional hectares (ha) of forestland in 2055 at $5 per Mg C and 422 million ha at $100 per Mg C. Estimates of reductions in area deforested, GHG mitigation potential, and annual land rental payments required are presented, all of which vary by region, carbon price paid, and time frame of mitigation.  相似文献   

3.
Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.  相似文献   

4.
The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.  相似文献   

5.
Greenhouse gas emissions during cattle feedlot manure composting   总被引:11,自引:0,他引:11  
The emission of greenhouse gases (GHG) during feedlot manure composting reduces the agronomic value of the final compost and increases the greenhouse effect. A study was conducted to determine whether GHG emissions are affected by composting method. Feedlot cattle manure was composted with two aeration methods--passive (no turning) and active (turned six times). Carbon lost in the forms of CO2 and CH4 was 73.8 and 6.3 kg C Mg-1 manure for the passive aeration treatment and 168.0 and 8.1 kg C Mg-1 manure for the active treatment. The N loss in the form of N2O was 0.11 and 0.19 kg N Mg-1 manure for the passive and active treatments. Fuel consumption to turn and maintain the windrow added a further 4.4 kg C Mg-1 manure for the active aeration treatment. Since CH4 and N2O are 21 and 310 times more harmful than CO2 in their global warming effect, the total GHG emission expressed as CO2-C equivalent was 240.2 and 401.4 kg C Mg-1 manure for passive and active aeration. The lower emission associated with the passive treatment was mainly due to the incomplete decomposition of manure and a lower gas diffusion rate. In addition, turning affected N transformation and transport in the window profile, which contributed to higher N2O emissions for the active aeration treatment. Gas diffusion is an important factor controlling GHG emissions. Higher GHG concentrations in compost windrows do not necessarily mean higher production or emission rates.  相似文献   

6.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.  相似文献   

7.
With urban areas responsible for a significant share of total anthropogenic emissions, greenhouse gas (GHG) emissions due to land-use change (LUC) induced by peri-urban (PU) development have the potential to be considerable. Despite this, there is little research into the transition from PU cropland to housing in terms of contribution to global warming. This paper presents a cross-sectoral integrative method for prospective climate change evaluation of PU LUC. Specifically, direct LUC (dLUC) GHG emissions from converting PU cropland to greenfield housing were examined. Additionally, GHG emissions due to displaced crop production inducing indirect LUC (iLUC) elsewhere were assessed. GHG impacts of dLUC and iLUC were each determined to be approximately 8 per cent of total GHG emissions due to a greenfield housing development displacing PU cropland. This magnitude of dLUC and iLUC emissions suggests that both have importance in future land-use decision making with respect to PU environments.  相似文献   

8.
Landfills and old waste deposits are some of the major anthropogenic sources of methane (CH4) emissions worldwide. Despite the fact that during the last 15 years the amount of carbon dioxide equivalent (CO2-eq.) emitted from German landfills was reduced by approximately two thirds, estimates show that currently more than 10 Mtonnes are still being emitted annually. As a case study, the in situ aerated former Kuhstedt Landfill (District of Rotenburg (Wümme), Germany) was assessed regarding the possibility of reducing the emitted amounts of greenhouse gases (GHG; here methane). The assessment was based on both a model calculation of the landfill gas emissions that should occur under anaerobic conditions (reference scenario) as well as using monitoring data plus extrapolations to determine the actual emissions from the landfill. It was demonstrated that more than 72% of the total GHG emissions occurring under anaerobic conditions could be avoided by altering the ambient aerobic/oxidizing conditions. By means of subsequent thermal treatment (regenerative thermal oxidation, RTO) of the extracted off-gases during the aeration process, the amount of CO2-eq. savings, as calculated from the amount of emitted methane taking into account secondary emissions for energy production, could be further increased to 96%.  相似文献   

9.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

10.
Greenhouse gas (GHG) emission inventories, which currently inform abatement policy discussions, are developed mostly from national scale data. Nevertheless, although the policy debate tends to take place in global and national arenas, action to abate GHG emissions is inherently within the provenance of local institutions and communities. The purpose of this paper is to examine how much information is lost by not estimating GHG emissions data at scales finer than the whole US. Such information may be critical in bridging global and local policy. Differences in the composition of GHG emission sources based on GHG emission inventories at three nested spatial scales (national, state, local) for four study sites (in Kansas, North Carolina, Ohio and Pennsylvania) are analysed, drawing upon initial results of a large collaborative study known as the 'Association of American Geographers-Global Change in Local Places (GCLP)' project. The concept of spatial sovereignty of emissions is developed to test the cross-scale reliability of emission inventories. For the test year 1990, close agreement is found in the by-gas composition of GHG emissions among national, state and local inventories. Spatial sovereignty in this case is maintained. However close agreement is not found in the by-source composition of GHG emissions among national, state and local inventories. Spatial sovereignty in this case is not maintained. Regular compilation of state and local emissions source inventories may be necessary to track important spatial and temporal deviations from national trends.  相似文献   

11.
Carbon and N losses reduce the agronomic value of compost and contribute to greenhouse gas (GHG) emissions. This study investigated GHG emissions during composting of straw-bedded manure (SBM) and wood chip-bedded manure (WBM). For SBM, dry matter (DM) loss was 301 kg Mg(-1), total carbon (TC) loss was 174 kg Mg(-1), and total nitrogen (TN) loss was 8.3 kg Mg(-1). These correspond to 30.1% of initial DM, 52.8% of initial TC, and 41.6% of initial TN. For WBM, DM loss was 268 kg Mg(-1), TC loss was 154 kg Mg(-1), and TN loss was 1.40 kg Mg(-1), corresponding to 26.5, 34.5, and 11.8% of initial amounts. Most C was lost as CO2 with CH4 accounting for <6%. However, the net contribution to greenhouse gas emissions was greater for CH4 since it is 21 times more effective at trapping heat than CO2. Nitrous oxide (N2O) emissions were 0.077 kg N Mg(-1) for SBM and 0.084 kg N Mg(-1) for WBM, accounting for 1 to 6% of total N loss. Total GHG emissions as CO2-C equivalent were not significantly different between SBM (368.4 +/- 18.5 kg Mg(-1)) and WBM (349.2 +/- 24.3 kg Mg(-1)). However, emission of 368.4 kg C Mg(-1) (CO2-C equivalent) was greater than the initial TC content (330.5 kg Mg(-1)) of SBM, raising the question of the net benefits of composting on C sequestration. Further study is needed to evaluate the impact of composting on overall GHG emissions and C sequestration and to fully investigate livestock manure management options.  相似文献   

12.
Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective was to analyze the impacts of mitigation alternatives, management of water, fertilizer, and rice straw, on net GHG emissions (carbon dioxide, methane, and nitrous oxide fluxes), yields, and water use. After constructing a GIS database of soil, climate, rice cropping area and systems, and management practices, we ran DNDC with 21-yr alternative management schemes for each of the approximately 2500 counties in China. Results indicate that, despite large-scale adoption of midseason drainage, there is still large potential for additional methane reductions from Chinese rice paddies of 20 to 60% over 2000-2020. However, changes in management for reducing CH4 emissions simultaneously affect soil carbon dynamics as well as N2O emissions and can thereby reorder the ranking of technical mitigation effectiveness. The order of net GHG emissions reduction effectiveness found here is upland rice > shallow flooding > ammonium sulfate > midseason drainage > off-season straw > slow-release fertilizer > continuous flooding. Most of the management alternatives produced yields comparable to the baseline; however, continuous flooding and upland rice significantly reduced yields. Water management strategies appear to be the most technically promising GHG mitigation alternatives, with shallow flooding providing additional benefits of both water conservation and increased yields.  相似文献   

13.
Methane (CH4) effluxes by paddy-culture rice (Oryza sativa L.) contribute about 16% of the total anthropogenic emissions. Since radiative forcing of CH4 at current atmospheric concentrations is 21 times greater on a per mole basis than that of carbon dioxide (CO2), it is imperative that the impact of global change on rice CH4 emissions be evaluated. Rice (cv. IR72) was planted in sunlit, closed-circulation, controlled-environment chambers in which CH4 efflux densities were measured daily. The CO2 concentration was maintained at either 330 or 660 micromol mol(-1). Air temperatures were controlled to daily maxima and minima of 32/23, 35/26, and 38/29 degrees C at each CO2 treatment. Emissions of CH4 each day were determined during a 4-h period after venting and resealing the chambers at 0800 h. Diurnal CH4 effluxes on 77, 98, and 119 d after planting (DAP) were obtained similarly at 4-h intervals. Emissions over four-plant hills and over flooded bare soil were measured at 53, 63, and 100 DAP. Emissions were negligible before 40 DAP. Thereafter, emissions were observed first in high-CO2, high-temperature treatments and reached a sustained maximum efflux density of about 7 mg m(-2) h(-1) (0.17 g m(-2) d(-1)) near the end of the growing season. Total seasonal CH4 emission was fourfold greater for high-CO2, high-temperature treatments than for the low-CO2, low-temperature treatment, probably due to more root sloughing or exudates, since about sixfold more acetate was found in the soil at 71 DAP. Both rising CO2 and increasing temperatures could lead to a positive feedback on global warming by increasing the emissions of CH4 from rice.  相似文献   

14.
Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions.  相似文献   

15.
Greenhouse gas balance for composting operations   总被引:1,自引:0,他引:1  
The greenhouse gas (GHG) impact of composting a range of potential feedstocks was evaluated through a review of the existing literature with a focus on methane (CH(4)) avoidance by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH(4) avoidance when feedstocks are composted instead of landfilled (municipal solid waste and biosolids) or lagooned (animal manures). Methane generation potential is given based on total volatile solids, expected volatile solids destruction, and CH(4) generation from lab and field incubations. For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve the equivalent of 3.1 Mg CO(2) per 1 dry Mg of feedstocks composted if feedstocks were diverted from anaerobic storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG emissions from the use of electricity and fossil fuels and through GHG emissions during composting. Greenhouse gas emissions during composting are highest for high-nitrogen materials with high moisture contents. These debits are minimal in comparison to avoidance credits and can be further minimized through the use of higher carbon:nitrogen feedstock mixtures and lower-moisture-content mixtures. Compost end use has the potential to generate carbon credits through avoidance and sequestration of carbon; however, these are highly project specific and need to be quantified on an individual project basis.  相似文献   

16.
Until recently, Intergovernmental Panel on Climate Change (IPCC) emission factor methodology, based on simple empirical relationships, has been used to estimate carbon (C) and nitrogen (N) fluxes for regional and national inventories. However, the 2005 USEPA greenhouse gas inventory includes estimates of N2O emissions from cultivated soils derived from simulations using DAYCENT, a process-based biogeochemical model. DAYCENT simulated major U.S. crops at county-level resolution and IPCC emission factor methodology was used to estimate emissions for the approximately 14% of cropped land not simulated by DAYCENT. The methodology used to combine DAYCENT simulations and IPCC methodology to estimate direct and indirect N2O emissions is described in detail. Nitrous oxide emissions from simulations of presettlement native vegetation were subtracted from cropped soil N2O to isolate anthropogenic emissions. Meteorological data required to drive DAYCENT were acquired from DAYMET, an algorithm that uses weather station data and accounts for topography to predict daily temperature and precipitation at 1-km2 resolution. Soils data were acquired from the State Soil Geographic Database (STATSGO). Weather data and dominant soil texture class that lie closest to the geographical center of the largest cluster of cropped land in each county were used to drive DAYCENT. Land management information was implemented at the agricultural-economic region level, as defined by the Agricultural Sector Model. Maps of model-simulated county-level crop yields were compared with yields estimated by the USDA for quality control. Combining results from DAYCENT simulations of major crops and IPCC methodology for remaining cropland yielded estimates of approximately 109 and approximately 70 Tg CO2 equivalents for direct and indirect, respectively, mean annual anthropogenic N2O emissions for 1990-2003.  相似文献   

17.
Concentrations of dissolved methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) were measured in the water columns of non-oxygenated and artificially oxygenated, ice-covered eutrophied lakes in the mid-boreal zone in Finland during late winter 1997 and 1999. Sampling was conducted during winter stratification, the critical period for oxygen (O2) deficiency in seasonally ice-covered, thermally stratified lakes. Oxygen concentrations were maintained at least at a moderate level throughout the oxygenated water columns, whereas the non-oxygenated columns suffered anoxic hypolimnia. The mean concentrations of dissolved CH4 exceeding the atmospheric equilibrium were greater in the non-oxygenated water columns (20.6-154 microM) than in the oxygenated ones (0.01-1.41 microM). In contrast, the mean excess CO2 concentrations varied less between the non-oxygenated and oxygenated sites (0.28-0.47 and 0.25-0.31 mM, respectively). Oxygenated water columns had greater mean excess concentrations of N2O (0.018-0.032 microM) than the non-oxygenated ones (0.005-0.024 microM). If the accumulated greenhouse gas stores in the water columns during winter are assumed to be released to the atmosphere during the spring overturn, the global warming potentials (GWP, time horizon 100 yr) of these potential emissions at the non-oxygenated, eutrophic study sites ranged from 177 to 654 g CO2 equivalent (CO2-e) m-2 compared with 144 to 173 g CO2-e m-2 at the oxygenated sites. The increase in the accumulation of CH4 was the main reason for the higher GWP of the non-oxygenated sites. Anthropogenic eutrophication of lake ecosystems can generate increased CH4 emissions due to associated O2 depletion of their sediment and water column.  相似文献   

18.
Terrestrial systems represent a significant potential carbon (C) sink to help mitigate or offset greenhouse gas emissions. Nearly 3.2 Mha are permitted for mining activities in the United States, which are required to be reclaimed with vegetative cover. While site-specific studies have assessed C accumulation on reclaimed mine sites, regional analyses to estimate potential C increases have not been conducted. For this analysis, potential C sequestration is analyzed on 567,000 ha of mine land in a seven-state region reclaimed to cropland, pasture, or forest. Carbon accumulation is estimated for cropland, pasture, and forest soils, forest litter layer, and aboveground biomass by estimating average annual rates of C accumulation from site-specific and general C sequestration studies. The average annual rate of C storage is highest when mine land is reclaimed to forest, where the potential sequestration is 0.7 to 2.2 Tg yr(-1). The C from soils, litter layer, and biomass from mine lands reclaimed to forest represents 0.3 to 1.0% of the 1990 CO2 emissions from the study region (919 Tg CO2). To achieve the greenhouse gas (GHG) emission reduction goal of 7% below the 1990 level as proposed by the Kyoto Treaty requires CO2 emissions in the study area to be reduced by just over 64 Tg CO2. The potential carbon storage in mine sites reclaimed to forest could account for 4 to 12.5% of these required reductions.  相似文献   

19.
Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO) and nitrous oxide (NO) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in NO emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased NO fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil NO emissions in the presence of earthworms was significantly reduced by the addition of both biochars. biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO efflux in the absence of earthworms. However, soil CO efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil NO and CO emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.  相似文献   

20.
The aim of this study is to identify management practices that effectively reduce greenhouse gas (GHG) emissions with regard to the green supply chain adopted by mobile phone producers. Six cases were surveyed (Apple, Samsung, LG, Huawei, Nokia, and ZTE). The main source of data was sustainability reports, which were retrieved from the Global Reporting Initiative database. A special data analysis technique called rank analysis was adopted. The results revealed that the effective practices to reduce GHG 1 emissions were related to production process and business travel; those that were effective for reducing GHG 2 emissions were related to facilities accreditation and energy saving; and those effective in reducing GHG 3 emissions were related to logistics and customer practices. No effective actions related to the management of relationships with suppliers were identified by this study. Indicative models for the relationship between actions and GHG emissions were developed, as was a value‐stream map. The previous studies reporting the effective practices in other industries reported results for reducing GHG 1 or GHG 3, or overall GHG emissions, without discriminating among the actions taken to reduce such emissions, although some limited actions were reported. This study describes the effective practices along the whole supply chain—both upstream and downstream—and it also lists the actions related to addressing all the emissions, whether GHG 1, 2, or 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号