首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

2.
我国典型工程机械燃油消耗量及排放清单研究   总被引:4,自引:6,他引:4  
李东玲  吴烨  周昱  杜譞  傅立新 《环境科学》2012,33(2):518-524
建立非道路移动机械排放清单是对其污染进行控制的基础.本研究参考美国环保署NONROAD模型中非道路移动源排放模拟的基本方法,建立基于实际燃油消耗率估算我国工程机械燃油消耗量及排放清单的方法.通过调查分析我国典型工程机械的保有量构成、活动水平、实际燃油消耗率和排放因子等相关参数,估算了2007年我国挖掘机和装载机两类典型工程机械的油耗量及排放量.结果表明,我国2007年挖掘机和装载机的柴油总消耗量为1.21×107 t,占当年全国各行业柴油总消耗量的9.7%;NOx和PM的总排放量分别6.81×105 t和5.31×104 t,与当年全国道路机动车的NOx和PM排放总量相比,工程机械的排放已经不容忽视.尽快加严并有效实施我国工程机械用发动机排放标准对控制其排放具有重要意义.  相似文献   

3.
天津市非道路移动源污染物排放清单开发   总被引:4,自引:8,他引:4  
张意  Andre Michel  李东  张欣  吴琳  张衍杰  马超  邹超  毛洪钧 《环境科学》2017,38(11):4447-4453
基于天津市非道路移动源污染管控需求,根据调研收集到的2015年非道路移动源活动水平数据,采用环保部《非道路移动污染源排放清单编制技术指南(试行)》推荐的核算方法,建立较为完整的天津市非道路移动源排放清单,分析污染物的时空分布.2015年,天津市非道路移动源排放CO 6.15×10~3t、HC 2.45×10~3t、NO_x2.90×10~4t、PM 1.45×10~3t、SO_21.37×10~4t.船舶污染物排放占比最高,为所有非道路移动源污染物排放总量的73.66%,主要分布于天津港区;其次是非道路移动机械,占21.66%,主要分布于市郊种植业和养殖业区县、城市建设和人群活动较为密集的城区;民航飞机和铁路机车占比较小,分别为3.55%和1.13%,主要分布于机场和铁路沿线.总体上,非道路移动源从3月开始排放量逐渐升高,而年底和年初(冬季)排放量相对较低.  相似文献   

4.
广东省人为源大气污染物排放清单及特征研究   总被引:24,自引:9,他引:24  
本研究根据收集的广东省人为源活动水平数据,采用合理的估算方法、排放因子和GIS技术,建立了该地区2010年3 km×3 km人为源大气污染物排放清单.结果显示,2010年广东省SO2、NOx、CO、PM10、PM2.5、BC、OC、VOCs和NH3排放总量分别为867.8×103、1607.0×103、7476.0×103、1397.6×103、633.2×103、50.5×103、98.3×103、1436.5×103和578.3×103t.固定燃烧源是SO2和NOx的最大排放贡献源,CO排放主要来自道路移动源、固定燃烧源和生物质燃烧源,扬尘源和工业过程源是主要的PM10和PM2.5排放源,生物质燃烧源是最大的BC和OC贡献源,VOCs排放主要来自有机溶剂使用源、道路移动源和工业过程源,NH3排放主要来源于畜禽养殖和氮肥施用.东莞、佛山和广州是主要的SO2、NOx、CO和VOCs排放城市,广州、清远和梅州是最主要的PM10和PM2.5排放城市,BC排放集中在广州、深圳、东莞、佛山等珠三角城市,OC的重要排放城市为湛江和茂名,NH3排放主要分布在茂名、湛江和肇庆.空间分布结果显示,广东省NH3排放高值区分布在粤西和粤东地区,其他污染物排放高值区则主要分布在珠三角城市群.本研究建立的排放源清单仍具有一定的不确定性,建议后续研究加强大气污染源排放的基础研究,进一步完善该地区的排放源清单,以期为区域大气污染预报预警和污染控制措施的制定提供重要基础数据.  相似文献   

5.
海峡西岸地区人为源大气污染物排放特征研究   总被引:2,自引:3,他引:2  
黄成 《环境科学学报》2012,32(8):1923-1933
采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.  相似文献   

6.
乌鲁木齐市城区机动车大气污染物排放特征   总被引:4,自引:1,他引:3  
对乌鲁木齐市城区车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行调研和测试,并根据IVE模型计算得到机动车污染物排放清单,获得分车型、燃料类型及启动/运行方式的机动车污染物排放分担率.结果表明:2011年乌鲁木齐市机动车CO、NO_x、HC和PM的排放量分别为20.22×104、2.60×104、1.84×104和0.44×10~4t·a~(-1),机动车污染物排放分担率差别显著,乘用车、公交车和重型货车是CO和HC主要排放源;重型货车和乘用车是NO_x的主要排放源;重型货车是PM的主要排放源.汽油车是CO和HC排放的主要来源,柴油车是NO_x和PM排放的主要来源,天然气车各类污染物排放量均较低.控制柴油重型货车是消减机动车污染物排放的重要方式.  相似文献   

7.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

8.
通过van Aerde速度-流量模型模拟和交通流量调查获取了阳泉市路网的车流量、车型构成和车速基础数据,利用自下而上的方法,基于实际交通流量数据、机动车排放因子和路段,构建了阳泉市道路机动车排放清单,并分析了机动车污染物排放特征.结果表明:2017年阳泉市道路机动车排放的CO、HC、NOx、PM分别为4.56×104、...  相似文献   

9.
南昌市移动源排放清单研究   总被引:8,自引:4,他引:4  
根据收集的南昌市移动源活动水平数据,采用合适的估算方法、排放因子和GIS技术,建立了南昌市2007—2014年移动源排放清单,并对2014年移动源清单进行了空间化处理与分析,空间分辨率为1 km×1 km.结果表明,2007—2014年南昌市移动源共向大气排放CO、HC、NO_x、PM_(2.5)、PM_(10)、SO_2分别为18.26×10~4、5.07×10~4、18.46×10~4、0.99×10~4、1.08×10~4、3.31×10~4t.其中,2014年移动源向大气中排放的这6种污染物总量分别为2.14×10~4、0.76×10~4、1.97×10~4、0.08×10~4、0.09×10~4、0.55×10~4t.道路移动源中,汽油小型客车是CO、HC和SO_2最大的贡献源,排放量分别占机动车排放总量的55.1%、78.5%和56.1%;柴油重型货车是NO_x、PM_(2.5)和PM_(10)排放贡献率最大的车型,分别占43.2%、40%和40%.非道路移动源中,小型拖拉机对CO、HC、NO_x、PM_(2.5)和PM_(10)的贡献率均较大,分别占非道路移动源排放总量的29.9%、26.9%、23.4%、29.5%和29.8%;SO_2排放主要来源于船舶,占非道路移动源SO_2排放总量的45.1%.高污染排放集中的区域,主要是青山湖区、西湖区和东湖区.  相似文献   

10.
海峡西岸经济区大气污染物排放清单的初步估算   总被引:6,自引:1,他引:5  
以2009年为基准年,结合污染源普查数据、统计年鉴及工业活动、居民生活等多个方面对海峡西岸经济区包括SO2、NOx、PM2.5、VOCs和NH3在内的大气污染物的排放量进行了估算,建立了海西区大气污染物排放清单.结果发现,上述5类污染物基准年的排放量分别为40.67×104、55.84×104、50.57×104、152.26×104和26.18×104t.其中,SO2、NOx及PM2.5的排放主要来自电厂,占排放总量的比例分别为25.58%、34.89%和38.75%;VOCs和NH3的主要排放源分别来自植被排放和养殖业,其贡献量分别为49.12%和47.07%.采用GIS对排放清单进行网格化处理,得出SO2、NOx及PM2.5的高排放强度区域与固定源的空间分布较为一致.此外,结合国家和地方"十二五"发展规划,采用情景分析方法估算了2015年海西区大气污染物的排放清单.与基准年相比,SO2、NOx和NH3的排放量呈下降趋势,PM2.5和VOCs的排放量呈大幅度增加.基准年排放清单的不确定性分析显示,VOCs排放估算的不确定度最大,为225%.  相似文献   

11.
根据2008年长三角地区江苏、安徽、浙江3省各地级市及上海市水稻、小麦、玉米、油菜4种农作物的年产量,结合谷草比、秸秆焚烧比例及排放因子建立了长三角地区秸秆焚烧大气污染物排放清单.结果表明:长三角地区秸秆焚烧产生的PM10、PM2.5、SO2、NOx、CO、EC、OC分别为36.8×104、14.4×104、1.5×104、9.2×104、20.8×104、2.6×104、12.2×104t.秸秆焚烧污染物排放量较大的区域主要集中在江苏中北部和安徽北部.在区域大气环境模拟系统RegAEMS中考虑秸秆焚烧源的影响,针对2008年10月底江苏一次重霾污染天气事件进行模拟,发现考虑秸秆焚烧源后模拟结果有较大的改善.秸秆焚烧可以导致区域PM10、CO浓度上升30%以上,黑碳和有机物的消光贡献明显增强.区域输送研究表明,苏中地区、外省秸秆焚烧排放源对此次重霾污染的贡献分别达到32.4%、33.3%.  相似文献   

12.
长三角区域非道路移动机械排放清单及预测   总被引:1,自引:5,他引:1  
黄成  安静宇  鲁君 《环境科学》2018,39(9):3965-3975
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义.  相似文献   

13.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   

14.
长沙市人为源大气污染物排放清单及特征研究   总被引:4,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

15.
成都市道路移动源排放清单与空间分布特征   总被引:4,自引:0,他引:4  
以成都市为例开展了路网、交通流、道路行驶工况和机动车保有量等数据的收集工作,运用自下而上的方法,基于实测校正和本地化的IVE模型计算了不同区域机动车在高速路、主干道、次干道和支路的排放因子,应用GIS技术建立了1 km×1 km的成都市高时空分辨率道路移动源排放清单.结果表明,2016年成都市道路移动源CO、VOCs、NO_x、SO_2、PM_(10)和NH_3排放量分别为4.2×10~5、4.5×10~4、7.2×10~4、0.4×10~3、1.1×10~4和6.2×10~3t.CO排放主要贡献车型为小型客车、中型客车和大型客车,VOCs排放主要源于小型客车和摩托车,NOx和SO2排放主要产生于小型客车和重型货车,PM10排放主要贡献车型为重型货车,NH3排放主要由小型客车贡献.污染物排放量空间分布呈现出由城市中心向卫星城市、远郊区递减趋势,中心城区和二圈层区域路网密集,排放呈片状分布,三圈层则呈带状分布.排放清单机动车技术分布数据可靠性较高,而交通流数据和排放因子存在一定不确定性.  相似文献   

16.
利用IVE模型和对杭州市机动车排放管理数据库大数据的分析,得到杭州市2015年各类机动车主要温室气体高分辨率排放清单,分析了排放分担情况及时间变化特征,并利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布.结果表明,杭州市道路移动源温室气体排放中CO_2、CH_4和N_2O的年排放量分别为818.11×10~4、0.85×10~4和0.07×10~4t,合计856.79×10~4t(以CO2当量计).从温室气体种类来看,CO_2占道路移动源温室气体排放总量的绝大部分,为95.5%;从机动车类型来看,小微型客车对道路移动源温室气体排放的贡献率最大,占72.8%;从道路类型的排放情况来看,杭州市市中心、城区、城郊和郊区中温室气体合计CO_2当量贡献率最高的均为主干路,分别为43.4%、61.8%、58.0%和42.4%.杭州市道路移动源温室气体排放强度均呈现由城市中心向城市边缘递减的趋势,同时温室气体排放量日变化特征明显,均出现弱双峰现象.  相似文献   

17.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

18.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

19.
长三角地区典型城市非道路移动机械大气污染物排放清单   总被引:8,自引:8,他引:8  
本研究选取上海和杭州两市开展了非道路移动机械的实地调查,分析了各城市非道路移动机械的种类构成、使用特点、燃料类型、功率分布和排放标准等级,在此基础上建立了城市尺度非道路移动机械排放清单技术方法,编制了上海和杭州市2014年非道路移动机械大气污染物排放清单.结果表明,上海和杭州市非道路移动机械柴油消费分别为6.1×10~5t和3.2×10~5t,NO_x排放分别为3.09×10~4t和1.72×10~4t,PM_(2.5)排放分别为1.41×10~3t和8.1×10~2t,其中,挖掘机等建筑市政施工机械的排放贡献最为突出.非道路移动机械NO_x排放分别占两城市所有源的11.1%和16.1%,占流动源的18.5%和32.2%,已成为城市大气污染的重要来源之一.  相似文献   

20.
根据渭南市机动车保有量和抽样调查与观测数据,采用 MOVES 模型计算了渭南市 2017—2019 年道路移动源 CO2、CH4、N2O 和 CO 4 种温室气体的排放量,分析了机动车车型、燃料和排放标准对温室气体排放量的影响.基于ArcGIS和渭南市道路网信息,建立了高分辨率(1 km×1 km 和 1 h×1 h)的温室气体排放清单 . 结果表明,渭南市 2019 年道路移动源 CO2、CH4、N2O 和 CO 的排放量分别为 424.322×104、0.044×104、0.007×104和 2.808×104 t,以 CO2当量计,机动车温室气体的总排放量为 432.843×104 t. 4种道路移动源温室气体中,CO2占总温室气体排放量的98.03%. 渭南市小型客车对温室气体的贡献率最大,分别排...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号