首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract: Damage to nontarget (native) invertebrates from biological control introductions is rarely documented. We examined the nontarget effects of a generalist parasitoid fly , Compsilura concinnata ( Diptera: Tachinidae), that has been introduced repeatedly to North America from 1906 to 1986 as a biological control agent against 13 pest species. We tested the effect of previously established populations of this fly on two native, nontarget species of moths ( Lepidoptera: Saturniidae) , Hyalophora cecropia and Callosamia promethea , in Massachusetts forests. We estimated survivorship curves for newly hatched H. cecropia larvae (n = 500), placed five per tree in the field and found no survival beyond the fifth instar. We simultaneously deployed cohorts (n = 100) of each of the first three instars to measure the effect of parasitoids during each stage of development. C. concinnata was responsible for 81% of H. cecropia mortality in the first three instars. We deployed semigregarious C. promethea in aggregations of 1–100 larvae in the field and recorded high rates of parasitism by C. concinnata among C. promethea larvae exposed for 6 days (69.8%) and 8 days (65.6%). We discovered a wild population of a third species of silk moth, the state-listed (threatened) saturniid Hemileuca maia maia, and found that C. concinnata was responsible for 36% (n = 50) mortality in the third instar. Our results suggest that reported declines of silk moth populations in New England may be caused by the importation and introduction of C. concinnata .  相似文献   

2.
Invasive prey impacts the abundance and distribution of native predators   总被引:1,自引:0,他引:1  
Barber NA  Marquis RJ  Tori WP 《Ecology》2008,89(10):2678-2683
While an extensive literature exists on the negative effects of invasive species, little is known about their facilitative effects on native species, particularly the role of invasives as trophic subsidies to native predators. The invasive gypsy moth (Lymantria dispar) undergoes periodic outbreaks during which it represents a super-abundant food source for predators capable of consuming it, particularly native cuckoos (Coccyzus erythropthalmus and C. americanus). We examined how gypsy moth outbreaks affect the abundance and distribution of cuckoos using the North American Breeding Bird Survey and 29 years of U.S. Forest Service gypsy moth defoliation records. Abundances of both Black-billed and Yellow-billed Cuckoos were significantly above average during outbreaks, but populations were average or below average in preceding and subsequent years, suggesting that cuckoos are immigrating to defoliations during outbreak years. Spatial analyses showed that cuckoo abundances approximately 40-150 km outside of defoliation areas were significantly below average, and these under-occupied breeding areas extended in all four compass directions around outbreaks. This result supports the idea that cuckoos locate gypsy moth outbreaks during a post-migratory nomadic phase. By shifting the annual distribution of cuckoos, gypsy moths may be shifting the trophic impact of cuckoos across large distances, which could affect native insect herbivores and plants.  相似文献   

3.
The importance of efficaciously assessing the risk for introduction and establishment of pest species is an increasingly important ecological and economic issue. Evaluation of climate is fundamental to determining the potential success of an introduced or invasive insect pest. However, evaluating climatic suitability poses substantial difficulties; climate can be measured and assessed in a bewildering array of ways. Some physiological filter, in essence a lens that focuses climate through the requirements and constraints of a potential pest introduction, is required. Difficulties in assessing climate suitability are further exacerbated by the effects of climate change. Gypsy moth (Lymantria dispar L.) is an exotic, tree-defoliating insect that is frequently introduced into the western United States. In spite of an abundance of potential host species, these introductions have yet to result in established populations. The success of eradication efforts and the unsuccessful establishment of many detected and undetected introductions may be related to an inhospitable climate. Climatic suitability for gypsy moth in the western United States, however, is potentially improving, perhaps rapidly, due to a general warming trend that began in the mid 1970s and continues today. In this work, we describe the application of a physiologically based climate suitability model for evaluating risk of gypsy moth establishment on a landscape level. Development of this risk assessment system first required amassing databases that integrated the gypsy moth climatic assessment model, with host species distributions, and climate (historical, present, and future). This integrated system was then used to evaluate climate change scenarios for native host species in Utah, with the result that risk of establishment will dramatically increase during the remainder of the 21st century under reasonable climate change scenarios. We then applied the risk assessment system to several case histories of detected gypsy moth introductions in Utah. These applications demonstrated the general utility of the system for predicting risk of establishment and for designing improved risk detection strategies.  相似文献   

4.
Management of invasive species involves choosing between different management strategy options, but often the best strategy for a particular scenario is not obvious. We illustrate the use of optimization methods to determine the most efficient management strategy using one of the most devastating invasive forest pests in North America, the gypsy moth (Lymantria dispar), as a case study. The optimization approach involves the application of stochastic dynamic programming (SDP) to a metapopulation framework with different infestation patch sizes, with the goal of minimizing infestation spread. We use a novel "moving window" approach as a way to address a spatially explicit problem without being explicitly spatial. We examine results for two cases in order to develop general rules of thumb for management. We explore a model with limited parameter information and then assess how strategies change with specific parameterization for the gypsy moth. The model results in a complex but stable, state-dependent management strategy for a multiyear management program that is robust even under situations of uncertainty. The general rule of thumb for the basic model consists of three strategies: eradicating medium-density infestations, reducing large-density infestations, and reducing the colonization rate from the main infestation, depending on the state of the system. With specific gypsy moth parameterization, reducing colonization decreases in importance relative to the other two strategies. The application of this model to gypsy moth management emphasizes the importance of managing based on the state of the system, and if applied to a specific geographic area, has the potential to substantially improve the efficiency and cost-effectiveness of current gypsy moth eradication programs, helping to slow the spread of this pest. Additionally, the approach used for this particular invasive species can be extended to the optimization of management programs for the spread of other invasive and problem species exhibiting metapopulation dynamics.  相似文献   

5.
Population cycles of herbivores are thought to be driven by trophic interaction mechanisms, either between food plant and herbivore or between the herbivorous prey and its natural enemies. Observational data have indicated that hymenopteran parasitoids cause delayed density-dependent mortality in cyclic autumnal moth (Epirrita autumnata) populations. We experimentally tested the parasitism hypothesis of moth population cycles by establishing a four-year parasitoid-exclusion experiment, with parasitoid-proof exclosures, parasitoid-permeable exclosures, and control plots. The exclusion of parasitoids led to high autumnal moth abundances, while the declining abundance in both the parasitoid-permeable exclosures and the control plots paralleled the naturally declining density in the study area and could be explained by high rates of parasitism. Our results provide firm experimental support for the hypothesis that hymenopteran parasitoids have a causal relationship with the delayed density-dependent component required in the generation of autumnal moth population cycles.  相似文献   

6.
Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across its full range of demographic variability; (4) combinations of agents that simultaneously reduce rosette survival and seed production will be required to suppress the most vigorous A. petiolata populations. These predictions can be tested using established long-term monitoring sites coupled with a designed release program. If demographic models can successfully predict biocontrol agent impact on invasive plant populations, a continued dialogue and collaboration between empirical and theoretical approaches may be the key to the development of successful biocontrol tactics for plant invaders in the future.  相似文献   

7.
Summary A standard buffer (5 mM phosphate at pH 7) which is used to extract protein from insect eggs provided complete protein solubility for eggs from three of four tree-feeding lepidopteran species: obliquebanded leaf roller (Choristoneura rosaceana), forest tent caterpillar (Malacosoma disstria), and the eastern tent caterpillar (Malacosoma americanum). Under the same extraction protocol, egg proteins from the gypsy moth (Lymantria dispar), remained nearly insoluble. An array of methods typically used to solubilize insect egg proteins were tried and all but the most denaturing (2% SDS) were ineffective. Extraction buffers with typically high pH values were then evaluated. The results indicated that 1) solubility of gypsy moth egg proteins was pH dependent, and full solubility of most egg proteins required the extraction buffer to have a pH of 12 or more prior to the addition of eggs. We also determined that 2) the gypsy moth egg has a buffering capacity which must be surpassed for complete protein extraction, 3) low salt/high pH buffers gave slightly higher total protein values than did high salt/high pH buffers, 4) parental nutritional history (host species utilized) and egg developmental state (pre-embryonatedvs postembryonated/pre-hatch) were unrelated to the requirements for complete egg protein solubilization, and 5) the presence of soluble phenolics, compounds that have the potential to bind to protein and cause insolubility, was confirmed for the gypsy moth egg with 2-D paper chromatography and several other tests. Based on these results, we present a hypothesis about the cause of egg protein insolubility in the gypsy moth.  相似文献   

8.
Brown-headed Cowbirds, Molothrus ater , are brood parasites on many species of North American Passerines. Cowbird parasitism is frequently cited as a contributing factor in the decline of United States passerine populations, based on three lines of evidence. First, range expansion and population increases by Cowbirds in this century are dramatic and well documented. Second, increasing rates of parasitism have been discovered in a variety of host species populations. Finally, direct negative effects of parasitism on certain vulnerable species notably Kirtland's Warbler, Dendroica kirtlandii , have been demonstrated. It remains unproven, however, that Cowbirds have significant negative effects on more abundant and widely-distributed hosts.
We report here on the impact of Cowbird parasitism on populations of Nuttall's White-crowned Sparrow, Zonotrichia leucophrys nuttalli , in the San Francisco Bay Area. This widespread songbird is now subject to a 40–50% rate of parasitism in San Francisco, an increase from 5% only 15 years ago. Using known mortality and fecundity values, we calculate that this population of White-crowns cannot maintain its numbers when the parasitism rate exceeds approximately 20%. Present levels of parasitism thus appear to threaten the longevity survival of this adaptable Songbird in the San Francisco Bay Area.  相似文献   

9.
One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.  相似文献   

10.
Abstract: The California Gnatcatcher (   Polioptila californica ) has become a flagship species in the dispute over development of southern California's unique coastal sage scrub habitat, a fragile, geographically restricted ecosystem with high endemism. One aspect of the controversy concerns the status of the subspecies of this bird in southern California coastal sage scrub that is currently listed as threatened under the U.S. Endangered Species Act. To investigate the recent population history of this species and the genetic distinctiveness of subspecies and to inform conservation planning, we used direct sequencing of mitochondrial DNA (mtDNA) for 64 individuals from 13 samples taken throughout the species' range. We found that coastal sage scrub populations of California Gnatcatchers are not genetically distinct from populations in Baja California, which are dense and continuously distributed throughout the peninsula. Rather, mtDNA sequences from this species contain the signatures of population growth and support a hypothesis of recent expansion of populations from a southern Baja California refugium northward into the southern coastal regions of California. During this expansion, stochastic events led to a reduction in genetic variation in the newly occupied range. Thus, preservation of coastal sage scrub cannot be linked to maintaining the genetic diversity of northern gnatcatcher populations, despite previous recognition of subspecies. Our study suggests that not all currently recognized subspecies are equivalent to evolutionarily significant units and illustrates the danger of focusing conservation efforts for threatened habitats on a single species.  相似文献   

11.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

12.
Cronin JT 《Ecology》2007,88(12):2977-2990
The interaction between species, mediated by a shared natural enemy (i.e., apparent competition), has been the subject of much theoretical and empirical investigation. However, we lack field experiments that assess the importance of apparent competition to metacommunity structure. Here, I conducted a series of field experiments to test whether apparent competition, mediated by shared egg parasitoids (Anagrus nigriventris and A. columbi), occurs between two abundant planthopper species (Delphacodes scolochloa and Prokelisia crocea) of the North American Great Plains. The two planthoppers feed on different plant species within prairie potholes (wet depressions) and, thus, do not interact directly. At the scale of individual potholes, a five-fold pulse increase in D. scolochloa density (relative to control potholes) resulted in a steady decline in P. crocea density over two generations. As expected in cases of apparent competition, P. crocea eggs in these potholes suffered twice the level of parasitism as P. crocea eggs in control potholes. In contrast, a sixfold increase in P. crocea density had no effect on D. scolochloa density or parasitism in those potholes. The superiority of D. scolochloa over P. crocea likely can be attributed to a larger source population size, greater amount of host habitat, and/or the presence of a phenological refuge from parasitism for D. scolochloa. In another experiment, in which small populations of P. crocea were established either in close proximity to D. scolochloa or in isolation, I found that the likelihood of P. crocea persistence was 36% lower in the former than the latter populations. This difference was attributable to very high rates of parasitism of P. crocea when adjacent to D. scolochloa. These two experiments provide clear evidence that the two planthopper species engage in apparent competition and that the shared parasitoids may play a significant role in limiting membership in a local community. Based on these findings, I argue that metacommunity studies must be broadened to include higher trophic levels.  相似文献   

13.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

14.
Blitzer EJ  Welter SC 《Ecology》2011,92(11):2020-2026
It has been established that herbivore populations can be structured by apparent competition, even if they do not compete directly for resources. But we lack evidence on the mechanisms behind such indirect competition. This study shows that temporal asynchronies in emergence time lead to apparent competition via shared natural enemies in a leafminer-parasitoid community. We present three kinds of evidence on mechanisms driving apparent competition. First, we conducted a two-year population census of Liriomyza helianthi and Calycomyza platyptera, along with all associated parasitoids, at seven sites in the Californian Central Valley, USA. We then assessed C. platyptera parasitism on 16 vegetation islands, half with experimental removal of early-season L. helianthi populations. Finally, we examined parasitoid host preference between leafminer species. We found that Liriomyza helianthi populations emerged approximately one month before C. platyptera. Experimental removal of L. helianthi populations in the early summer led to a 60% reduction in parasitism of C. platyptera. We found no evidence of differential parasitoid preference for host species. The findings suggest that temporal asynchrony can lead to negative effects on later-emerging species and that such indirect competition may be a major structuring force in herbivore communities.  相似文献   

15.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

16.
Many species are restricted to a marginal or suboptimal fraction of their historical range due to anthropogenic impacts, making it hard to interpret their ecological preferences from modern-day data alone. However, inferring past ecological states is limited by the availability of robust data and biases in historical archives, posing a challenge for policy makers . To highlight how historical records can be used to understand the ecological requirements of threatened species and inform conservation, we investigated sperm whale (Physeter macrocephalus) distribution in the Western Indian Ocean. We assessed differences in information content and habitat suitability predictions based on whale occurrence data from Yankee whaling logs (1792–1912) and from modern cetacean surveys (1995–2020). We built maximum entropy habitat suitability models containing static (bathymetry-derived) variables to compare models comprising historical-only and modern-only data. Using both historical and modern habitat suitability predictions  we assessed marine protected area (MPA) placement by contrasting suitability in- and outside MPAs. The historical model predicted high habitat suitability in shelf and coastal regions near continents and islands, whereas the modern model predicted a less coastal distribution with high habitat suitability more restricted to areas of steep topography. The proportion of high habitat suitability inside versus outside MPAs was higher when applying the historical predictions than the modern predictions, suggesting that different marine spatial planning optimums can be reached from either data sources. Moreover, differences in relative habitat suitability predictions between eras were consistent with the historical depletion of sperm whales from coastal regions, which were easily accessed and targeted by whalers, resulting in a modern distribution limited more to steep continental margins and remote oceanic ridges. The use of historical data can provide important new insights and, through cautious interpretation, inform conservation planning and policy, for example, by identifying refugee species and regions of anticipated population recovery.  相似文献   

17.
Phylogeographic patterns among coastal fishes are expected to be influenced by distinct ecological, biological and life history traits, along with historical events and oceanography (past and present). This study focuses on the broad range phylogeography of the Montagu’s blenny Coryphoblennius galerita, a species with well-known ecological features, strictly tied to rocky environments and with limited dispersal capability. Eleven locations from the western Mediterranean to the Bay of Biscay (including the Macaronesian archipelagos) were sampled. Mitochondrial DNA control region (CR) and the first intron of the S7 ribosomal protein gene were used to address the population structure, the signatures of expansion/contraction events retained in the genealogies and potential glacial refugia. The genetic diversity of the Montagu’s blenny was high throughout the sampled area, reaching maximum values in the Mediterranean and western Iberian Peninsula. The results confirmed a marked structure of C. galerita along the sampled area, with a major separation found between the Mediterranean and the Atlantic populations, and suggesting also a separation between the Azores and the remaining Atlantic locations. This study revealed complex and deep genealogies for this species, with Montagu’s blenny populations presenting signatures of events clearly older than the Last Glacial Maximum, with lineages coalescing in early Pleistocene and Pliocene. Three potential glacial refugia where this species might have survived Pleistocene glaciations and from where the recolonization process might have taken place are suggested: South of Iberian Peninsula/North Africa, Mediterranean and Azores.  相似文献   

18.
Globally, anthropogenic land-cover change has been dramatic over the last few centuries and is frequently invoked as a major cause of wildlife population declines. Baseline data currently used to assess population trends, however, began well after major changes to the landscape. In the United States and Canada, breeding bird population trends are assessed by the North American Breeding Bird Survey, which began in the 1960s. Estimates of distribution and abundance prior to major habitat alteration would add historical perspective to contemporary trends and allow for historically based conservation targets. We used a hindcasting framework to estimate change in distribution and abundance of 7 bird species in the Willamette Valley, Oregon (United States). After reconciling classification schemes of current and 1850s reconstructed land cover, we used multiscale species distribution models and hierarchical distance sampling models to predict spatially explicit densities in the modern and historical landscapes. We estimated that since the 1850s, White-breasted Nuthatch (Sitta carolinensis) and Western Meadowlark (Sturnella neglecta) populations, 2 species sensitive to fragmentation of oak woodlands and grasslands, declined by 93% and 97%, respectively. Five other species we estimated nearly stable or increasing populations, despite steep regional declines since the 1960s. Based on these estimates, we developed historically based conservation targets for amount of habitat, population, and density for each species. Hindcasted reconstructions provide historical perspective for assessing contemporary trends and allow for historically based conservation targets that can inform current management.  相似文献   

19.
The tellinid bivalve Macoma balthica (L.) has an extensive geographic range that reaches from temperate to arctic coastal waters in the North Atlantic and North Pacific oceans. Recent studies have indicated that eastern and western North Atlantic populations are morphologically and genetically different from one another, and that they may have diverged as sibling species. To determine the genetic relationship between M. balthica from the Pacific and Atlantic coasts of North America, populations from each coast were examined at 11 enzyme loci using standard starch gel electrophoresis. Allele frequency data indicate that M. balthica populations from San Francisco Bay, California appear more closely related to western North Atlantic populations than to populations from Oregon. We suggest that San Francisco Bay populations were introduced relatively recently from western North Atlantic populations. The Oregon populations are probably a natural extension of northern populations that occur along Northern Asia and in the eastern North Atlantic.  相似文献   

20.
Previous studies have reported a recent decline in breeding populations of migratory songbirds in eastern and central North America. Several explanations have been suggested: deforestation on the wintering grounds in the tropics and habitat loss, increased predation pressure, and increased cowbirds parasitism on the breeding range. We used these factors to assign 47 species of insectivorous passerines to groups with contrasting vulnerability, and then used the North America Breeding Bird Survey to analyze population trends in these groups on a large continental scale. Variables indexing susceptibility to predation on the breeding ground were most strongly correlated with population trends form 1968 to 1987. During the period from 1978 to 1987, migratory status was also significantly associated with population trends long-distance migrants to the neotropics exhibited a small, nonsignificant decreasing trend, whereas residents and short-distance migrants increased strongly. During the same time period, the group of species with low nest location, open nest, and high cowbird parasitism declined significantly. Although it is difficult to separate the effects of multiple factors, our analyses suggest that predation on the breeding ground in North America has played a larger role in the decline of migratory songbirds than deforestation on the wintering grounds in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号