首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Y. Ding  S. C. Wu 《Chemosphere》1995,30(12):2259-2266
The partition coefficients of organochlorine pesticides (OCPs) between the organic matter of Taichung soil and water (Koc) were evaluated with batch-type experiments. The partition coefficients of OCPs between Aldrich humic acid and water (Kdoc) were estimated with solubility enhancement method as well. In this study, the Kocs of aldrin, heptachlor, and p,p′-DDT are greater than their Kdocs, and the relationship of dieldrin and heptachlor epoxide are opposite. The variations of partition coefficients are discussed. For predicting Kdoc, a log-log regression relationship of Kdoc and Kow is determined.  相似文献   

2.
Dissolved organic matter mediated aquatic transport of chlorinated dioxins   总被引:1,自引:0,他引:1  
The bioavailability and environmental fate of extremely hydrophobic environmental contaminants such as chlorinated dioxins is linked to their solubility characteristics in water. Solubilities of three chlorinated dioxins, viz., 1,2,3,7-T4CDD, 1,2,3,4,7-P5CDD, and 1,2,3,4,7,8-H6CDD, were determined in pure water using a glass bead generator column technique, and their enhanced solubilities in the presence of several dissolved humic fractions quantified at 20, 30 and 40°C. The strengths of these interactions between chlorodioxins and the dissolved humic substances, viz., a fulvic acid, a humic acid, and Aldrich humic acid, were examined using simple thermodynamic calculations. A new partition/association coefficient, Koc (mobile) is defined.  相似文献   

3.
Cousins I  Mackay D 《Chemosphere》2000,41(9):1389-1399
A quantitative structure-property relationship (QSPR) method for the correlation of physical-chemical properties and partition coefficients, namely the 'three solubility' approach, is described and applied to a group of 22 phthalate esters. The solubilities or 'apparent-solubilities' of these substances in the liquid state are compiled and correlated against Le Bas molar volume in the three primary media of air, water and octanol. From these solubilities the air-water (K(AW)), octanol-water (K(OW)) and octanol-air (K(OA)) partition coefficients are deduced. Estimated solubilities in water and octanol-water partition coefficients are shown to compare favourably with more recent accurate measurements. A set of selected values is presented, with error limits, which is recommended for use in modelling and assessment studies. Some environmental implications are discussed of the large range in property values for this series.  相似文献   

4.
Kuramochi H  Maeda K  Kawamoto K 《Chemosphere》2007,67(9):1858-1865
The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.  相似文献   

5.
A method for the detection of PCBs in natural water, based on extraction/concentration with tab shaped elements cut from C18 fiber glass SPE disks coupled with a fluorescence detection has been evaluated. The potential of the method was estimated through the measurement of the fluorescence quantum yields in acetonitrile and limits of detection (LOD) of 11 PCBs congeners and Arochlors 1221 and 1242 in pure water. Most of the LOD values are within the range of PCB concentrations found in highly polluted waters (<1microg l(-1)) and thus confer some interest to the method. However, as expected, naturally present humic substances was shown to compete with the solid phase for PCBs adsorption thus reducing the capability of the method when applied to natural waters. A Stern-Volmer plot of the fluorescence signal reduction in the presence of various type of humic substances leads to apparent sorption coefficients (K(DOC)) significantly higher than the literature values determined for PCBs or for polycyclic aromatic hydrocarbons, indicating that besides complexing PCBs, humic substances may also block some of the adsorption sites at the sorbent surface. An increase of the pH up to 11 was shown to reduce the negative effect of humic substances but their preliminary total denaturation or destruction appears as a prerequisite condition for taking full advantage of the present method.  相似文献   

6.
Solubilizing abilities of aggregates of humic acid (HA) to chlorinated benzenes (CBs) were investigated by means of the apparent water solubility enhancement. Both the water solubilities of 1,4-dichlorobenzene (DCB) and 1,2,4,5-tetrachlorobenzene (TeCB) linearly increased with increasing concentration of HA above the critical micelle concentration (CMC). Such solubilization behavior of CBs for HA was compatible with those for sodium dodecyl sulfate (SDS). These results indicate that the solubilization of CBs in the aqueous solution of HA above the CMC can be interpreted on the basis of the phase-separation model. Thus, the partition coefficients (K(mic)) of CBs between water and HA aggregate phases were calculated by assuming this model. The fact that the K(mic) value increased with increasing K(ow) of CBs supported the partition into the HA aggregate phase by hydrophobic interaction. The estimated K(mic) values of DCB were not dependent on the solution pH. Both K(mic) values of DCB and TeCB for the HA aggregate were found to be 4-5-fold lower than those of SDS.  相似文献   

7.
The quantitative determination of pesticide binding to dissolved humic substances is relevant to both water treatment operation using activated carbon adsorption process and the application of transport models that predict the environmental distribution patterns of a given hydrophobic contaminant. In this study and in a first set of experiments, the extent of binding between (i) three pesticides of environmental concern, aldicarb, lindane and pentachlorophenol, and (ii) dissolved commercial humic acid and soil extracted fulvic acid, was determined using dialysis experiments and water solubility enhancement tests. In a second set of experiments, the influence of dissolved humic substances or pesticide on the retention of the other co-adsorbate onto activated carbon was investigated in binary systems. It was found that association was negligible for aldicarb and that the pesticide sorption onto activated carbon was not affected by humic acid (8.5 mg liter(-1) DOC). The association constants K for lindane and pentachlorophenol were identical in the presence of fulvic acid (logK=4.1) but lower than that observed with humic acid. In the presence of humic acid, binding affinity for pentachlorophenol (logK=4.6) was higher than the one observed for lindane (logK=4.4), despite its much higher water solubility. This observation suggests that the aromatic character of the pentachlorophenol molecule contributes to association interactions with humic acid. From co-adsorption experiments onto activated carbon it was found that fulvic acid (7.7 mg litre(-1) DOC) slightly enhances sorption kinetics of pentachlorophenol. Lindane (1 mg litre(-1)) does not affect sorption kinetics for fulvic acid but markedly enhances both the sorption kinetics and adsorptive capacity for humic acid. Activated carbon retention of dissolved humic substances or pesticide appears to be enhanced by the association potential that exists between these co-adsorbates in some binary systems.  相似文献   

8.
In this paper, comparison is made of terms describing solubilization of hydrophobic organic compounds (HOC) by dissolved humic substances (DHS) and commercial non-ionic surfactants. This paper examines the ability of a commercial humic acid (Aldrich humic acid) to solubilize and mobilize tetrachlorothene (PCE) residual in porous media. The constant for solubilization of PCE by Aldrich humic acid is shown to be a factor of two to thirty times less than that published for dodecyl alcohol ethoxylate surfactants, showing that Aldrich humic acid is less capable than some non-ionic surfactants at solubilizing residual PCE. The depression of PCE–water interfacial tension in the presence of DHS is shown to be significantly less than published values for a non-ionic surfactant, and surfactant mixtures, indicating that the DHS used in this study is less prone to cause mobilization of non-aqueous phase liquids relative to surfactants. Several possible advantages of DHS use in the remediation of subsurface media contaminated with HOC are described, including the ability of DHS to solubilize HOC irrespective of the DHS concentration, and potential lesser tendency of DHS to depress the interfacial tension between non-aqueous phases and water relative to surfactants (an advantage when mobilization is undesired).  相似文献   

9.
Niederer C  Goss KU 《Chemosphere》2008,71(4):697-702
Chlorophenol isomers are known to possess substantially different octanol/water and octane/water partition constants depending on whether the chlorine substituents are in the ortho or meta/para position. Here we show that the same is also true for environmental partition processes such as water/air and humic acid/air partitioning. Quantitative structure property relationships (QSPR) such as those in the widely used EPI-suite or SPARC fail to correctly predict this influence of the substituent position on the compound's partitioning. Only a more sophisticated quantum chemical software, called COSMOtherm, correctly reproduced these effects. Based on this and earlier experiences we conclude that COSMOtherm may be a better tool for screening large sets of chemicals for which no experimental data on their partitioning yet exist.  相似文献   

10.
Hu XL  Peng JF  Liu JF  Jiang GB  Jönsson JA 《Chemosphere》2006,65(11):1935-1941
The effect of some environmentally relevant factors including salinity, pH, and humic acids on the availability of bisphenol A (BPA) was evaluated by using the negligible-depletion solid-phase microextraction (nd-SPME) biomimetic method. With the variation of salinity (0–500 mM NaCl) and pH (5.0–8.5) of aqueous solutions, the partition coefficients of BPA between the nd-SPME fiber and the aqueous solution varied in the range of log D = 3.55–3.86, which indicates that the salinity and pH can influence the availability of BPA. By using Acros humic acid as model dissolved organic matter (DOM), it was also demonstrated that the environmental factors such as salinity and pH could affect the partitioning of BPA between DOM and aqueous solutions. The determined partition coefficients of BPA between dissolved organic carbon (DOC) and aqueous solutions were in the range of log DDOC = 4.03–5.60 for Acros humic acid solutions with 1–50 mg l−1 DOC. The influence of salinity and pH on log DDOC was more significant at low concentration (0–5 mg l−1) of DOC.  相似文献   

11.
A Paschke  M Manz  G Schüürmann 《Chemosphere》2001,45(6-7):721-728
Reversed-phase high-performance liquid chromatography (RP-HPLC) in both, isocratic and gradient elution mode (stationary phase: LiChrospher 100 RP-18; mobile phase: water/methanol or water/acetonitrile) was used for a renewed determination of octanol/water partition coefficients (Kow) of selected tetrachlorobenzyltoluene (TCBT) isomers. Reported Kow values identify this substance class as very hydrophobic but the data are relatively inconsistent. Based on a series of calibration runs with hydrophobic reference substances of different chemical structure at various eluent compositions we tested different approaches for the evaluation of isocratic retention factors (logk) and found substantial differences between the direct calibration procedure at special methanol volume fractions in the mobile phase (0.95-0.80) and the use of retention factors extrapolated to pure water as eluent (logkw). The logKow values obtained for the TCBTs with the latter approach are around 0.5 units higher and closer to literature data. The gradient elution experiments yield slightly better results compared to the isocratic direct calibration procedure, but not as good as the calibration with log kw. In addition, the use of the RP-HPLC retention factors for estimating sorption coefficients (Koc) of TCBT isomers is discussed.  相似文献   

12.
The effect of organic matter on the solid-phase extraction (SPE) efficiency for pesticides belonging to different chemical groups (urea-derivatives, carbamates and triazines) and having different polarities, was simultaneously studied for the first time in pure and simulated water samples. SPE was carried out in precolumns packed with C18 silica or styrene-divinylbenzene copolymer PLRP-S phases on-line coupled to high performance liquid chromatography (HPLC) analysis. Retention factors in water (k'(W)) were estimated for 25 compounds and used for the calculation of the theoretical breakthrough volume (Vb(T)) in pure water. Experimental breakthrough volumes (Vb(E)) were first determined using purified and deionized water as the matrix for selected compounds having Vb(T) < 500 mL; then, the same water with an added humic acid sodium salt (HA) at 0.4-5.6 mg/L of dissolved organic carbon (DOC) content, was used as the matrix for compounds having VbE < 500 mL in pure water. Several polar pesticides showed negative linear or logarithmic Vb(E) curves depending on HA content; their recoveries were also determined in environmental samples having low dissolved organic carbon values, between 0.5-6.4 mg/L. A similar behavior was observed for these compounds in simulated and natural water samples, where DOC concentration and the percolated volume (Vp) mainly determine the solute recoveries values. However, the variation of recoveries as a function of DOC content could be negative or null depending on the two examined conditions (Vp lower or larger than Vb(E) in pure water). Results demonstrated that breakthrough volume must always be considered to correctly interpret the participation of dissolved humic material on the SPE efficiency of organic micropollutants in water.  相似文献   

13.
Copolovici LO  Niinemets U 《Chemosphere》2005,61(10):1390-1400
To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.  相似文献   

14.
Wang YH  Wong PK 《Chemosphere》2003,50(4):499-505
Correlation relationships between physico-chemical properties including vapor pressures (P), water solubilities (S), Henry's law constants (H(c)), n-octanol-water partition coefficients (K(ow)), sediment-water partition coefficient (K(pw)) and biotic lipid-water partition coefficient (K(bw), bioconcentration factor) of polychlorinated-dibenzofurans (PCDFs) and their gas chromatographic retention indices (GC-RIs) were established. A model equation between GC-RIs (= RI) and these physico-chemical properties (K) of PCDFs was in a form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.94, except H(c). These equations were derived from six experimental data (five experimental data for log K(bw)) in each physico-chemical properties of PCDFs reported previously. The values of log P, log S, log H(c), log K(ow), log K(pw) and log K(bw) of PCDFs predicted by these equations based on their GC-RIs in the present study derviated from those calculated by the solubility parameters for fate analysis method in a previous study by 0.49, 0.32, 0.11, 0.34, 0.14 and 0.22 log units, respectively.  相似文献   

15.
Monoterpenes are C10H(n)O(n') compounds of natural origin and are potentially environmentally safe substitutes for traditional pesticides. Still, an assessment of their environmental behaviour is required. As a first step in a theoretical study focussing on monoterpenes applied as pesticides to terrestrial environments, soil fate model input-parameters were determined for 20 monoterpenes with widely different structural characteristics. Input-parameters are the water solubility (S(W)), vapour pressure (P), n-octanol-water partition coefficient (K(OW)), atmospheric air and bulk water diffusion coefficients (D(A)air and D(W)water), first order biodegradation rate constants (k), and their temperature dependence. Values for these parameters were estimated or taken from previous experimental work. The quality of the estimations was discussed by focussing on their statistics and by comparison with available experimental data. From these properties, the air-water partition coefficient (K(AW), Henry's Law constant), the interface-water partition coefficient (K(IW)) and the organic matter-water partition coefficient (K(OM)) could be estimated with varying levels of accuracy. In general, little experimental data turned out to be available on biodegradation rate constants and on the temperature dependence of physico-chemical parameters.  相似文献   

16.
Abstract

Fate of the fungicide chlorothalonil (TCIN) binding to dissolved organic acid fractions was quantified using gas‐purge desorption studies. Binding studies were conducted to measure the dissolved organic carbon partition constant (KDOC) with aquatic fulvic and humic acid fractions purified from cranberry bog water. Desorption studies at DOC concentrations up to 50 mg L‐1 resulted in mean log KDOC values of 4.63 (s.d.=0.5, n=8) and 4.81 (s.d.=0.7, n=7) for fulvic and humic acids, respectively. These values deviated from reported KOC (organic carbon) values by 0.5 to 1.5 orders of magnitude. The relationship between KOC and KDOC did not conform to accepted ratios of 10: 1 to 3: 1, although these studies were conducted with the strong hydrophobic fraction of DOC. Binding was rapid suggesting hydrophobic partitioning or weak Van Der Waals forces as binding mechanisms. The strong binding potential for TCIN to aquatic humic substances corresponds to increased solubility in the aqueous system. Sorption to DOC suggests a possible transport mechanism which may result in elevated concentrations of TCIN in cranberry bog systems.  相似文献   

17.
Kong XQ  Shea D  Baynes RE  Riviere JE  Xia XR 《Chemosphere》2007,66(6):1086-1093
A regression method was developed for the hydrophobicity ruler approach, which is an indirect method for determining the octanol/water partition coefficients of very hydrophobic compounds. Two constants introduced into the mathematical model were obtained by regression of the absorption data sampled before the partition equilibrium. A water miscible organic solvent was used to increase the solubility of the very hydrophobic compounds in the aqueous solution so that the hydrophobicity scale was reduced and the equilibration was accelerated. Polydimethylsiloxane/methanol aqueous solution and a series of 21 polychlorinated biphenyls (PCBs) were used to demonstrate the regression method. The PCB compounds with known experimental logK(o/w) values served as reference compounds, while the PCB compounds without known logK(o/w) values were determined. The distribution coefficients (logK(p/s)), uptake and elimination rate constants were obtained from the two regression constants for each compound (reference or unknown). The correlation of the logK(p/s) values of the reference PCB compounds with their logK(o/w) values was linear (logK(o/w)=2.69logK(p/s)+0.76, R(2)=0.97). The logK(o/w) values were compared with literature values and suggested that some values from the literature far off the calibration line could be inaccurate. The critical experimental factors, the merits of the regression method were discussed.  相似文献   

18.
Methods were developed for estimating the equilibrium sorption behavior of hydrophobic pollutants. At low pollutant concentration (aqueous phase concentration less than half the solubility), sorption isotherms were linear, reversible, and characterized by a partition coefficient, Kp. Partition coefficients normalized to organic carbon, KOC (KOC = Kpfraction organic carbon), were highly invariant over a set of sediments and soils collected from throughout the nation. Equations for estimating KOC from water solubility (including crystal energy) and octanol/water partition coefficients were developed. The predictive equations were tested on literature sorption data and found to estimate measured KOC's generally within a factor of two.  相似文献   

19.
Foliar emission rates of plant-generated volatile monoterpenes depend on monoterpene partitioning between air, aqueous and lipid-phases in the leaves. While Henry's law constants (H pc, equilibrium gas/water partition coefficient) and octanol/water partition coefficients (K OW) for pure water have been previously used to simulate monoterpene emissions from the leaves, aqueous phase in plants is a complex solution of electrolytes and neutral osmotica. We studied the effects of dissociated compounds KCl and glycine and sugars glucose, sorbitol and sucrose with concentrations between 0 and 1M on H pc and K OW values for limonene and linalool. Linalool with ca. 1500-fold lower H(pc) (2.62 Pa m(3)mol(-1) for pure water at 30 degrees C) and ca. 30-fold lower K OW (955 mol mol(-1) for pure water at 25 degrees C) is the more hydrophilic compound of the two monoterpenes. H pc of both monoterpenes increased with increasing concentration of both ionic compounds and sorbitol, but decreased with increasing glucose and sucrose concentrations. The salting-out coefficients for H pc (kH) were ca. an order of magnitude larger for more hydrophilic compound linalool than for more hydrophobic limonene. For linalool, co-solutes modified H pc by 30-50% at the highest concentration (1M) tested. The effect of temperature on the salting-out coefficient of KCl was minor. As with H pc, K OW increased with increasing the concentration of KCl, glycine and sorbitol, and decreased with increasing glucose and sucrose concentrations. For limonene, co-solutes modified K OW by 20-50% at the highest concentration used. For linalool, the corresponding range was 10-35%. Salting-out coefficients for H pc and K OW were correlated, but the lipid-solubility was more strongly affected than aqueous solubility in the case of limonene. Overall, these data demonstrate physiologically important effects of co-solutes on H pc and K OW for hydrophilic monoterpenes and on K OW for hydrophobic monoterpenes that should be included in current emission models.  相似文献   

20.
Theoretical derivations together with published experimental data on bioaccumulation of lipophilic compounds by certain groups of fish indicates that the uptake and clearance rate constants have a fixed relationship to the octanol to water partition coefficient over the partition coefficient range 102.5 to 106. This allows the calculation of times to establish effective equilibrium, and significant bioaccumulation of compounds in relation to the partition coefficient. By extrapolation superlipophilic compounds (partition coefficients > 106) have been shown to require a minimum period of 0.5 years increasing to 10 years when P = 108 to establish effective equilibrium and compounds with partition coefficients >1013 are not bioaccumulated to any significant extent. In practice then, a direct relationship between the bioaccumulation factor and the partition coefficient will not result with superlipophilic componds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号