首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: The conductivity of air, mineral oil (relative viscosity 77), and a light nontoxic oil (relative viscosity 4.7) was measured in three porous media: a sand, loamy sand, and a silt loam. The measurements were made over a range of water contents for each porous medium. Small volumes of air were present as well as significant amounts of water during most of the oil conductivity measurements. The results were compared to two methods for calculating conductivities of immiscible fluids in water-wet porous media. A new equation that accounts for swelling and for the gas slippage effect in very small pores was formulated for use with these methods The observed conductivities, spanning seven orders of magnitude, agree reasonably well with calculated values. Only three soil parameters are required to calculate the conductivities: (1) the saturated conductivity of water, (2) the saturated conductivity of the immiscible fluid of interest, and (3) a pore size index value that is obtained from an estimate from the water release curve of the porous material. Remediation of organic liquid spills is briefly discussed to illustrate the practical applications of gas phase conductivities, as well as those for immiscible organic liquid phases. It is concluded that, in light of spatial variation under field conditions, the method presented for calculating values of three-phase conductivities will be useful in the management of immiscible organic liquid spills and leaks.  相似文献   

2.
ABSTRACT: A multi-criteria approach to ground water quality monitoring network design is developed. The methodology combines multi-criteria decision making (MCDM) and modifications of geostatistical variance reduction analysis. Composite programming, a distance based optimization algorithm that employs a hierarchial structure, is used for the MCDM component of the design methodology. MCDM allows the consideration of numerous, often conflicting, design criteria. The methodology is useful for identifying the preferred combination of direct borehole and indirect geo-electric data. It also permits the use of prior information during initial stages of network development. Multi-variate kriging is employed to evaluate network performance using the combination of direct borehole data and indirect geoelectric data. Weighted measures of estimation variance are used as primary measures of performance, with the reduction in estimation variance being computed by the fictitious point method. Case study results demonstrate that the network design methodology can be used in both early and late phases of network development. It also leads to selection of the preferred combination and spatial orientation of direct and indirect data sources while considering cost-effectiveness and performance of alternative designs.  相似文献   

3.
ABSTRACT: Data were obtained from drilling and testing of a test injection well for deep underground injection of waste water effluent from the proposed 50-million-gallon-per-day (mgd) South District Regional Wastewater Treatment Plant of the Miami-Dade Water and Sewer Authority, Dade County, Florida. The drilling operation progressed in stages, each stage coverting the strata to be sealed off by the 48-inch, 40-inch, 30-inch, and 20-inch casings, respectively. Total depth of the well is 3,200 feet. The top of the saline, cavernous, dolomitic Boulder Zone was found at 2,790 feet below the surface and is separated from the Floridan aquifer above by approximately 1,100 feet of confining limestone layers. These confining layers were determined, by packer testing, to be very effective. The transmissivity of the Boulder Zone was estimated to be 14 × 106 gallons per day per foot (gpd/ft) from the data obtained from pump out tests. An 8,000-gallon-per-minute (gpm) injection test was conducted to confirm well performance under operating conditions. Based on all of the data obtained, it was concluded that underground injection into the Boulder Zone of secondary waste water effluent from the proposed treatment plant is feasible, both hydraulically and environmentally. A monitoring system was proposed to provide a record of the effects of injection on the subsurface environment.  相似文献   

4.
5.
ABSTRACT: Areas of low topographic relief have low water-table gradients and make the direction of movement of contaminants from land fills in the ground water difficult to predict from regional gradients alone. The landfill, nearby free-flowing ditches or canals, variations in hydraulic conductivity, and the influence of nearby pumping wells can all affect the direction of flow. In low-gradient areas the concepts of “upgradient” and “downgradient” are less useful in planning the location of monitoring wells than in areas of higher relief. Low-relief areas also may be affected by the discharge of mineralized water from deeper aquifers, naturally or through irrigation, which can mask geochemical surveys intended to detect landfill leachate. Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7×10?-4 to 5×10?-4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.  相似文献   

6.
    
In 1988, the Florida Institute of Phosphate Research (FIPR) funded project to develop an advanced hydrologic model for shallow water table systems. The FIPR hydrologic model (FHM) was developed to provide an improved predictive capability of the interactions of surface water and ground water using its component models, HSPF and MODFLOW. The Integrated Surface and Ground Water (ISGW) model was developed from an early version of FHM and the two models were developed relatively independently in the late 1990s. Hydrologic processes including precipitation, interception, evapotranspiration, runoff, recharge, streamflow, and base flow are explicitly accounted for in both models. Considerable review of FHM and ISGW and their applications occurred through a series of projects. One model evolved, known as the Integrated Hydrological Model IHM. This model more appropriately describes hydrologic processes, including evapotranspiration fluxes within small distributed land‐based discretization. There is a significant departure of many IHM algorithms from FHM and ISGW, especially for soil water and evapotranspiration (ET). In this paper, the ET concepts in FHM, ISGW, and IHM will be presented. The paper also identifies the advantages and data costs of the improved methods. In FHM and IHM, ground water ET algorithms of the MODFLOW ET package replace those of HSPF (ISGW used a different model for ground water ET). However, IHM builds on an improved understanding and characterization of ET partitioning between surface storages, vadose zone storage, and saturated ground water storage. The IHM considers evaporative flux from surface sources, proximity of the water table to land surface, relative moisture condition of the unsaturated zone, thickness of the capillary zone, thickness of the root zone, and relative plant cover density. The improvements provide a smooth transition to satisfy ET demand between the vadose zone and deeper saturated ground water. While the IHM approach provides a more sound representation of the actual soil profile than FHM, and has shown promise at reproducing soil moisture and water table fluctuations as well as field measured ET rates, more rigorous testing is necessary to understand the robustness and/or limitations of this methodology.  相似文献   

7.
    
ABSTRACT: Interpretation of ground water level changes in a developed aquifer usually relies on reference to some benchmark such as “predevelopment” ground water levels, changes from fall to fall and/or spring to spring, or to determination of maximum stress during the pumping season. The assumption is that ground water levels measured in the monitoring well accurately reflect the state of the ground water resource in terms of quantity in storage and the effects of local pumping. This assumption is questionable based on the patterns shown in continuous hydrographs of water levels in monitoring wells in Nebraska, and wells installed to determine vertical gradients. These hydrographs show clear evidence for vertical ground water gradients and recharge from overlying parts of the aquifer system to deeper zones in which production wells are screened. The classical concept of semi‐perched ground water, as described by Meinzer, is demonstrated by these hydrographs. The presence of semi‐perched ground water (Meinzer definition, there is no intervening unsaturated zone) invalidates the use of measured ground water levels in regional observation programs for detailed numerical management of the resource. Failure to recognize the Meinzer effect has led to faulty management. The best use of data from the observation well network would be for detection of trends and education unless it is clearly understood what is being measured.  相似文献   

8.
ABSTRACT: The Biscayne Aquifer is the sole source of drinking water for approximately three million residents of southeast Florida. Nine hazardous waste sites on the EPA National Priority List overlie this aquifer. Extensive investigation of an 80 square-mile area in metropolitan Miami detected low to moderate levels of toxic contaminants in the ground water, with volatile organic chemicals the most prevalent. The Centers for Disease Control concluded that contamination of the aquifer within the study area poses a serious potential threat to public health. Recommendations for source control and cleanup have been partially carried out. The top few feet of soil at the Miami Drum site have been excavated and relocated; ground water encountered during excavation has been withdrawn and treated, and the Northwest 58th Street Landfill has been closed. Recovery and treatment of ground water from the contaminated area was the recommended cleanup measure and has been approved by EPA and state and local agencies. A preventive action program for the Biscayne Aquifer region was also recommended for implementation by local agencies. This program consists of regulations, waste management practices, construction and treatment guidelines, and public information activities and materials. Implementing this program will help keep the Biscayne Aquifer water drinkable far into the future.  相似文献   

9.
ABSTRACT: As part of its overall system for protecting aquatic systems from unnecessary degradation, the State of Florida provides special protection for water bodies of unusual importance. Such water bodies are designated as “Outstanding Florida Waters” (OFW5). New discharges to OFWs are possible only if certain stringent criteria are met. A new point source direct discharge to an OFW is usually not allowed if it would cause any lowering of ambient water quality. A new indirect discharge (upstream from an OFW boundary) may be allowed only if it would not significantly degrade the OFW. To date, the advantages of the OFW system have clearly outweighed the disadvantages, and OFW designations are helping to protect Florida's most valuable waters from additional degradation. Florida's system could be a useful model for other jurisdictions wanting to provide special protection to special water bodies.  相似文献   

10.
    
ABSTRACT: Few hydrological models are applicable to pine flat-woods which are a mosaic of pine plantations and cypress swamps. Unique features of this system include ephemeral sheet flow, shallow dynamic ground water table, high rainfall and evapotranspiration, and high infiltration rates. A FLATWOODS model has been developed specifically for the cypress wetland-pine upland landscape by integrating a 2-D ground water model, a Variable-Source-Area (VAS)-based surface flow model, an evapotranspiration (ET) model, and an unsaturated water flow model. The FLATWOODS model utilizes a distributed approach by dividing the entire simulation domain into regular cells. It has the capability to continuously simulate the daily values of ground water table depth, ET, and soil moisture content distributions in a watershed. The model has been calibrated and validated with a 15-year runoff and a four-year ground water table data set from two different pine flat woods research watersheds in northern Florida. This model may be used for predicting hydrologic impacts of different forest management practices in the coastal regions.  相似文献   

11.
    
ABSTRACT: A procedure using a simple, empirically‐based model that makes efficient use of available information has been developed for designing a ground water monitoring well network. A moving plume is described by siting wells in a sequential manner, relying upon two‐dimensional concentration data obtained from previously installed wells to determine the locations of future wells. Data sets from two well known, densely monitored natural gradient tracer studies were used to test the procedure. Plumes defined by all information in the original networks were compared to those defined by reduced networks designed by the new procedure. The new procedure tracked the plumes using only a portion of that information. The new procedure could have reduced the number of wells in the original tests by about 50 percent without appreciable loss of plume information as measured by plume location and extent and by tracer mass.  相似文献   

12.
    
ABSTRACT: In the United States, millions of dollars are currently spent to monitor water quality for a whole suite of organic compounds. However, results of several surveys conducted in the past decade indicate that only a few pesticides occur in a small proportion of wells. Screening methods based on historical evidence of contamination patterns and knowledge of the locales will have significant potential to reduce these costs and effectively identify contamination problems. In this paper, the economics of utilizing two screening methods, sequential analysis and sample compositing, in the design of monitoring strategies is captured In the form of mathematical models and illustrated for a state-level monitoring program. When the two methods are adopted, the total analytical cost to conclusively identify contaminated wells in a network of 4,000 wells is shown to range from $12,500 to $1,575,000 depending on the extent of contamination. In contrast, the total analytical cost of a conventional program where all the wells in the network are sampled and tested for a standard suite of pesticides at a cost of $250/sample is one million dollars. Given such wide range in costs, it is prudent to incorporate the screening concepts presented in this paper in the development of cost-effective monitoring programs.  相似文献   

13.
ABSTRACT: The South Fork of Long Island, New York is an area which relies entirely on ground water for water supply. Most of the water which is pumped is artifically recharged, without treatment, via cesspools. The natural quality of the ground water is very high. Some areas show increasing nitrate in the ground water. This comes from both cesspools and agricultural fertilizer. Saline water intrusion is a potential problem in coastal areas. High ammonia in surface ponds may result in eutrophication.  相似文献   

14.
Budget changes, whether positive or negative, in water quality management agencies often mean a change in resources available for water quality monitoring. Many state agencies are currently facing monitoring budget cuts and, as a result, are reevaluating their monitoring programs. Such evaluations make use of a number of information sources, not the least of which are monitoring activities in other states. This article reports results of a survey of all fifty state water quality monitoring programs. Twenty questions were asked in the general areas of fixed-station monitoring, special studies, and biological monitoring. Each state was contacted by telephone at least twice during the survey. Fixed-station monitoring is conducted by 48 of 50 states. An average of 75 stations per state are sampled, generally on a monthly basis. There is a large variation in the way data are analyzed by the states; water quality indices and plots of concentration or loading over time are the most common methods. All but three states conduct special studies, but only seven repeat the studies on a regular basis. Special studies are generally problem specific as opposed to basin oriented. Biological monitoring is performed by 33 states; however, this is an area in which budget cuts are having a noticeable impact. In some cases, biological monitoring is being completely eliminated or suspended. Macroinvertebrate sampling is performed quarterly to biannualiy by 50% of the states; 75% of the states that sample macroinvertebrates do so annually. Periphyton sampling is performed by 33% of the states. Over 50% of the states are in the process of revising, or have revised, their monitoring program during the past five years. However, only four states had a detailed rationale and operating procedure for the entire monitoring system. Results of the survey are, therefore, averages of existing monitoring programs. Average results do not necessarily represent ideal situations, but do give an indication of how states are coping with their monitoring responsibilities.  相似文献   

15.
    
ABSTRACT: Several chlorinated solvent plumes threaten the sole‐source aquifer underlying the Massachusetts Military Reservation at the western end of Cape Cod. Sensitive surface water features including ponds, cranberry bogs, and coastal wetlands are hydraulically connected to the aquifer. For one of the plumes (CS‐10 the original remedy of 120 extraction and reinjection wells has the potential for significant disruption of surface water hydrology, through the localized drawdown and mounding of the water table. Recirculating wells with in‐well air stripping offer a cost‐effective alternative to conventional pump‐and‐treat technology that does not adversely affect the configuration of the water table. Pilot testing of a two well system, pumping 300 gpm, showed a capture radius of > 200 feet per well, in‐well trichloroethylene (TCE) removal efficiencies of 92 to 98 percent per recirculation cycle, an average of three recirculation cycles within the capture zone, and no measurable effect on water table elevations at any point within the recirculation/treatment zone. During 120 days of operation, the mean concentration of TCE in the treatment zone was reduced by 83 percent, from 1,111 μg/l to 184 μg/l. Full‐scale design projections indicate that 60 wells at an average spacing of 160 feet, having an aggregate recirculation 11 MGD, can contain the CS‐b plume without ground water extraction or adverse hydraulic effects on surface water resources. The estimated capital costs for such a system are about $7 million, and annual operations‐and‐maintenance costs should be about $1.4 million, 40 percent of those associated with a pump and treat system over a 20‐year period.  相似文献   

16.
    
ABSTRACT This study examined the feasibility of extending the Accelerated Salt Transport (ASTRAN) method of groud water quality control to a complex, closed basin which is experiencing ground water quality degradation from irrigated agriculture (e.g., the Tulare Lake Basin in the Southern portion of the California Central Valley). A linear programming model was constructed and parametric analysis conducted which produced results with a “general appraisal” (or “level B”) degree of accuracy. The study concluded that a drainage water export drain is required in order to implement a long-term solution but that ground water degradation can be mitigated by a combination of the ASTRAN method and other measures even with existing entitlements and legal constraints.  相似文献   

17.
    
ABSTRACT: A sample transfer device was designed to provide a closed loop sampling system between a ground water sampling pump and a 40 ml volatile organic compound (VOC) vial. The same attachment can also be used with a bailer. The unit is constructed of a poly-tetrafluoroethylene (PTFE) body into which two stainless steel needles are press fitted. The needles puncture the Teflon septum of a vial; fluid flows through the longer needle into the vial and exits the vial from the shorter needle. The device eliminates sample transfer bias associated with head space, visible gas bubbles, and atmospheric contamination. Field sampling designed to determine differences in trichloroethylene (TCE) concentrations presumedly due to the device were statistically significant in one case, and insignificant in the second.  相似文献   

18.
ABSTRACT: Two sampling strategies designed to test for compliance with water quality objectives are examined. For objectives based on long-term mean requirements, fixed frequency sampling at frequent intervals is most advantageous regardless of the underlying distribution of the data. For objectives that are based on maximum allowable concentrations, effective sampling strategies increase the likelihood of detecting noncompliance. If data are highly autocorrelated or sharply seasonal in distribution, an exceedance-driven sampling strategy is more effective and efficient for detecting violations than fixed frequency sampling. However, data generated by exceedance-driven sampling provide biased estimates of mean and standard deviation.  相似文献   

19.
ABSTRACT: A study of 222Rn concentrations in the water distribution system of Tucson, Arizona, revealed levels of 60 to 1260 pCi/L in domestic waters. These measurements are comparable to levels of between 80 and 1400 pCi/l for 222Rn found in ground water samples in the North-Central Tucson basin (Kahn et al., 1994). Estimated loss of 222Rn due to radioactive decay during travel from the well head to the home ranges from 8 to 50 percent.  相似文献   

20.
ABSTRACT: Protection of ground water quality is of considerable importance to local, state, and federal governments. This study uses a 15-year mathematical programming model to evaluate the effectiveness of low-input agriculture, under alternative policy scenarios, as a strategy to protect ground water quality in Richmond County, Virginia. The analysis considers eight policy alternatives: cost-sharing for green manures, two restrictions on atrazine applications levels, chemical taxation, a restriction on potential chemical and nitrogen levels in ground water only and in surface and ground water, and two types of land retirement programs. The CREAMS and GLEAMS models were used to estimate nitrate and chemical leaching from the crop root zone. The economic model evaluates production practices, policy constraints, and water quality given a long-term profit maximizing objective. The results indicate that low-input agriculture alone may not be an effective ground water protection strategy. The policy impacts include partial adoption of low-input practices, land retirement, and the substitution of chemicals. Only mandatory land retirement policies reduced all chemical and nutrient loadings of ground water; however, they did not promote the use of low-input agricultural practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号