首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted synoptic surveys over three seasons in one year to evaluate the variability in water sources and geochemistry of an urban river with complex water infrastructure in the state of Utah. Using stable isotopes of river water (δ18O and δ2H) within a Bayesian mixing model framework and a separate hydrologic mass balance approach, we quantified both the proportional inputs and magnitude of discharge associated with “natural” (lake, groundwater, and tributary inputs) and “engineered” (effluent and canal inflows) sources. The relative importance of these major contributors to streamflow varied both spatially and seasonally. Spatiotemporal patterns of dissolved oxygen, temperature, pH, calcium, chloride, nitrate, and orthophosphate indicated seasonal shifts in dominant sources of river water played an important role in determining water quality. We show although urban rivers are clearly influenced by novel water sources created by water infrastructure, they continue to reflect the imprint of “natural” water sources, including diffuse groundwater. Resource managers thus may need to account for the quantity of both surface waters and also historically overlooked groundwater inputs to address water quality concerns in urban rivers.  相似文献   

2.
ABSTRACT: The design of monitoring programs often serves as one of the major sources of error or uncertainty in water quality data. Properly designed programs should minimize uncertainty or at least provide a means by which variability can be partitioned into recognizable components. While the design of sampling programs has received recent attention, commonly employed strategies for limnological sampling of lakes may not be completely appropriate for many reservoirs. Based on NES data, reservoirs are generally larger, deeper, and morphologically more complex than natural lakes. Reservoirs also receive a majority of their inflow from a single tributary located a considerable distance from the point of outflow. The result is the establishment of marked physical, biological, and chemical gradients from headwater to dam. The existence of horizontal as well as vertical gradients, and their importance in water quality sampling design were the subject of intensive transect sampling efforts at DeGray Lake, a U.S. Army Corps of Engineers reservoir in southern Arkansas. Data collected were used to partition Variance, identify areas of similarity, and demonstrate how an equitable sampling program might be designed.  相似文献   

3.
ABSTRACT: The total suspended sediment loads of four north Mississippi reservoirs were determined from measurements of concentrations of suspended sediment in a vertical profile at several locations on each reservoir made during the year. These data were combined with the stage-height and known stage-volume relationships for each reservoir in a numerical integration to determine the total suspended sediment in the water body. Total suspended sediments were estimated using the product of the suspended sediment concentration in the surface water by the appropriate reservoir volume. The averaged ratios of the estimated to measured suspended sediment loads for each reservoir exceeded 0.90. Since the concentration of suspended sediments in surface waters of north Mississippi reservoirs has been shown as highly correlated with spectral reflectance, estimating the total suspended sediment of these reservoirs using remotely sensed spectral reflectance data is possible.  相似文献   

4.
ABSTRACT: The reliable sizing of reservoirs is a very important task of hydraulic engineering. Although many reservoirs throughout the world have been designed using Rippl's mass curves with historical inflow volumes at the dam site, this technique is now considered outdated. In this paper, synthetic series of monthly inflows are used as an alternative to historical inflow records. These synthetic series are generated from stochastic SARIMA (Seasonal Autoregressive Integrated Moving Average) models. The analyzed data refer to the planned Almopeos Reservoir on the Almopeos River in Northern Greece with 19‐year monthly inflow series. The analysis of this study demonstrates the ability of SARIMA models, in conjunction with the adequate transformation, to forecast monthly inflows of one or more months ahead and generate synthetic series of monthly inflows that preserve the key statistics of the historical monthly inflows and their persistence Hurst coefficient K. The forecasted monthly inflows would be of help in evaluating the optimal real time reservoir operation policies and the generated synthetic series of monthly inflows can be used to provide a probabilistic framework for reservoir design and to cope with the situation where the design horizon of interest exceeds the length of the historical inflow record.  相似文献   

5.
ABSTRACT: Artificial circulation was applied at East Sidney Lake, a small, eutrophic impoundment in New York, to improve the water quality of the reservoir and tailwater. Treatment was successful at both reducing the stability of the reservoir and maintaining higher mean oxygen concentrations in the bottom waters. Discharge waters had lower metals and phosphorus concentrations during treatment years. However, vertical temperature differences, although minimal, were still sufficient to permit chemical stratification and some phosphorus release from the sediments. Frequent mixing events during periods of low stability, and runoff from storm events, also appeared to increase transport of phosphorus into the epilimnion. Overall, treatment did not result in decreases in algal populations or improvements in water clarity.  相似文献   

6.
ABSTRACT: An heuristic iterative technique based upon stochastic dynamic programming is presented for the analysis of the operation of a three reservoir ‘Y’ shaped hydroelectric system. The technique is initiated using historical inflow data for the downstream reservoir. At each iteration the optimal policies for the downstream hydroelectric generating unit are used to provide relative weightings or targets for operation of upstream reservoirs. New input inflows to the downstream reservoir are then obtained by running the historical streamflow record through the optimal policies for the upstream reservoirs. These flows are then used to develop a new operating policy for the downstream reservoir and hence new targets for the upstream reservoirs. The process is continued until the operating policies for each reservoir provide the same overall system benefit for two successive iterations. Results obtained from the procedure are compared to the results obtained by historical operation of the system. The procedure is shown to develop operating policies which give benefits which are as close to the historical benefits as can be expected given the choice of the number of storage state variables.  相似文献   

7.
Abstract: Using the latest available General Circulation Model (GCM) results we present an assessment of climate change impacts on California hydrology and water resources. The approach considers the output of two GCMs, the PCM and the HadCM3, run under two different greenhouse gas (GHG) emission scenarios: the high emission A1fi and the low emission B1. The GCM output was statistically downscaled and used in the Variable Infiltration Capacity (VIC) macroscale distributed hydrologic model to derive inflows to major reservoirs in the California Central Valley. Historical inflows used as inputs to the water resources model CalSim II were modified to represent the climate change perturbed conditions for water supply deliveries, reliability, reservoir storage and changes to variables of environmental concern. Our results show greater negative impacts to California hydrology and water resources than previous assessments of climate change impacts in the region. These impacts, which translate into smaller streamflows, lower reservoir storage and decreased water supply deliveries and reliability, will be especially pronounced later in the 21st Century and south of the San Francisco bay Delta. The importance of considering how climate change impacts vary for different temporal, spatial, and institutional conditions in addition to the average impacts is also demonstrated.  相似文献   

8.
The operational parameter MRT%FE, representing the mean residence time of different ages fractions of effluent within a completely mixed reactor, was evaluated and integrated with first order kinetics. The parameter was used to model Escherichia coli concentrations in a municipal wastewater reservoir managed under different operating conditions (continuous and discontinuous). The study was conducted during 2004-2005 in a reservoir receiving effluents from the activated sludge treatment plant of Caltagirone (Eastern Sicily - Italy). The analytical approach is applied to the hydraulic state variables of the system (daily stored volumes, inlet and outlet flows), and the physical-chemical (pH, temperature, EC, TSS, BOD(5), COD) and bacteriological wastewater parameters (E. coli, FC, FS). In order to evaluate the reliability of the proposed approach, predicted E. coli concentrations within the reservoir were compared with measured ones by the correlation coefficient, F-test and Sperman's index. The study included the evaluation of die-off coefficient K(T) (d(-1)), light extinction coefficient K (m(-1)) and their relationships with climatic factors. Results of the study confirm that E. coli removal is related to the fractions of fresh effluent remaining each day within the reservoir with MRT%FE of about 5-8d, significantly lower than the nominal detention time (about 27d). The E. coli die-off coefficient (K(T)) was higher during system discontinuous operations and correlated with incident solar radiation and water temperature.  相似文献   

9.
ABSTRACT: Reservoirs are used to store water for public water supply, flood control, irrigation, recreation, hydropower, and wildlife habitat, but also often store undesirable substances such as herbicides. The outflow from 76 reservoirs in the midwestern USA, was sampled four times in 1992 and four times in 1993. At least one herbicide was detected in 82.6 percent of all samples, and atrazine was detected in 82.1 percent of all samples. Herbicide properties; topography, land use, herbicide use, and soil type in the contributing drainage area; residence time of water in reservoirs; and timing of inflow, release, and rainfall all can affect the concentration of herbicides in reservoirs. A GIS was used to quantify characteristics of land use, agricultural chemical use, climatic conditions, topographic character, and soil type by reservoir drainage basins. Multiple linear and logistic regression equations were used to model mean herbicide concentrations in reservoir outflow as a function of these characteristics. Results demonstrate a strong association between mean herbicide concentrations in reservoir outflow and herbicide use rates within associated drainage basins. Results also demonstrate the importance of including soils and basin hydrologic characteristics in models used to estimate mean herbicide concentrations.  相似文献   

10.
ABSTRACT: Concentrations of total nitrogen, total phosphorus, and total organic carbon in the Loxahatchee River estuary decreased with increasing salinity in a manner indicating that mixing and dilution of freshwater by seawater was the primary process controlling the down-stream concentrations of nutrients. Most of the nutrients in the surface freshwater inflows entered the estuary from five major tributaries; however, about 10 percent of the total nitrogen and 32 percent of the total phosphorus were from urban stormwater runoff. The input of nutrients was highly seasonal and storm related. During a 61-day period of above average rainfall that included Tropical Storm Dennis, the major tributaries discharged 2.7 metric tons of total phosphorus, 75 metric tons of total nitrogen, and 1,000 metric tons of organic carbon to the estuary. This period accounted for more than half of the total nutrient load from the major tributaries during the 1981 water year (October 1, 1980, through September 30, 1981). Inorganic phosphorus and nitrogen increased relative to total phosphorus and nitrogen during storm runoff. Nutrient yield from the basin, expressed as grams per square meter of basin area, was relatively low. However, because the basin area (544 square kilometers) is large compared with the volume of the estuary, the basin might be expected to contribute significantly to estuarine enrichment were it not for tidal flushing. Approximately 60 percent of the total volume of the estuary is flushed on each tide. Because the estuary is well flushed, it probably has a large tolerance for nutrient loading.  相似文献   

11.
ABSTRACT. The objective of this investigation was to determine the selectivity of withdrawal which is possible in southwestern reservoirs. Two stratified flow solutions were examined to test their applicability under field conditions. Although both appeared capable of accurate prediction of the outflow velocity profile, the Bohan-Grace solution, which required less input data, was utilized to predict the chemical constituents of single and simultaneous releases from several southwestern impoundments. Prediction of outflow water quality was within fifteen percent for southwestern reservoirs as shallow as fifty-five feet. The withdrawal layer thickness for the subject Texas impoundments included the entire hypolimnion or epilmnion depending on outlet location. The sensitivity of the velocity profile to seasonal changes, reservoir discharge rate and withdrawal port dimensions also is illustrated.  相似文献   

12.
ABSTRACT. In the last decade much research has been devoted to applying the systems analysis approach to water resources problems. A popular research goal has been determination of the “best” method of operating a multipurpose reservoir. The goal of this study was to derive the economically optimum flood control diagram for a multipurpose reservoir by systems analysis. The technique employed to optimize the flood control diagram was programmed so that the optimization process could be applied to other multipurpose reservoirs. Two computer programs developed at the U.S. Army Corps of Engineers' Hydrologic Engineering Center were utilized with modifications to simulate the operation of Folsom Reservoir in central California. Economic analyses were incorporated along with an optimization technique into the reservoir operations program; and the resultant program was capable of routing a sequence of monthly reservoir inflows, computing benefits for various flood control diagrams (as dictated by the optimization procedure), and selecting the economically optimum flood control diagram. The univariate gradient technique was the optimization procedure employed. The two computer programs are on file at the Hydrologic Engineering Center in Davis, California.  相似文献   

13.
ABSTRACT: As part of a basinwide water-quality study, nitrogen and phosphorus data for the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide were analyzed for spatial distributions, concentrations associated with various land uses, and temporal trends. Nitrogen and phosphorus concentrations generally increased in a downstream direction. Some nutrient concentrations were elevated at some sites in the upper parts of the basin in areas influenced by increasing urbanization. Sites were grouped according to land use and site type, and median nutrient concentrations were compared among groups. Sites within the agricultural areas of the basin generally had the highest concentrations of nitrogen and phosphorus; concentrations for main-stem, tributary, and urbanization sites were slightly lower than for the agricultural sites. Background sites, or sites with minimal land-use impacts, had very low median nutrient concentrations. Several sites with long-term data were analyzed for temporal trends in concentrations. Several statistically significant downward trends of low and moderate magnitude were observed for nitrogen and phosphorus species. No upward trends were observed in the data at any site.  相似文献   

14.
ABSTRACT: Individual particle analysis (IPA) by scanning electron microscopy interfaced with automated image and X‐ray analyses was used to characterize inorganic particles in five reservoirs and four tributaries located within the Catskill and Delaware systems of the New York City water supply. Individual particle analysis provides combined elemental and morphologic characterizations. Results are presented in terms of particle projected area per unit volume (PAV), consistent with optical impacts, and partitioned into seven generic particle types according to composition. Minerals of terrigenous origins, particularly clay minerals, dominated the inorganic particle populations of all the study systems except one downstream reservoir. Higher PAV levels were observed in the Catskill system. Particle dynamics represented by PAV were driven primarily by runoff, while the reservoirs were also greatly influenced by the timing of sediment resuspension promoted by drawdown of the surface and fall mixing. The benefit of the serial configuration of the reservoirs in decreasing inorganic particles with progression downstream towards the city is demonstrated. The patterns in PAV levels among the study systems generally tracked those of more common metrics of impacts of suspensoids, including mass concentrations of suspended solids, turbidity, and Secchi disc transparency.  相似文献   

15.
The US Department of the Army, Baltimore District Corps of Engineers, oversees a long-term monitoring study to assess and evaluate effects of the Jennings-Randolph reservoir on biota in the North Branch Potomac River. The reservoir was intended, in part, to mitigate effects of acid mine drainage originating in upstream and headwater areas. The present study assessed recovery of benthos and fish in this system, six years after completion of the reservoir. Higher pH and lower iron and sulfate concentrations were observed upstream of the reservoir compared to preimpoundment conditions, suggesting better overall water quality in the upper North Branch. Water quality improved slightly directly downstream of the reservoir. However, the reservoir itself was poorly colonized by macrophytes and benthic organisms, and plankton composition suggested either metal toxicity and/or nutrient limitation. One large tributary to the North Branch and the reservoir (Stony River) was shown to have high (and possibly toxic) levels of manganese, iron, zinc, and aluminum due to subsurface coal mine drainage. Macroinvertebrate diversity and number of taxa were higher in sites downstream of the reservoir in the present study. Compared with previous years, the present study suggested relatively rapid recovery in the lower North Branch due to colonization from two major unimpacted tributaries in this system: Savage River and South Branch Potomac. Abundance of certain mayfly species across sites provided the most clear evidence of longitudinal gradients in water quality parameters and geomorphology. Fish data were consistent with macroinvertebrate results, but site-to-site variation in species composition was greater. Data collected between 1982 and 1987 suggested that certain fish species have unsuccessfully attempted to colonize sites directly downstream of the reservoir despite the more neutral pH water there. Our results show that recovery of biota in the North Branch Potomac was attributed to decreased acid inputs from mining operations and dilution from the Savage River, which contributed better water quality. Continued improvement of North Branch Potomac biota may not be expected unless additional mitigation attempts, either within the reservoir or upstream, are undertaken.  相似文献   

16.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

17.
Potential use of reservoirs and flooded fields stocked with aquatic plants for reduction of the nutrient levels of organic soil drainage water was evaluated. The treatment systems include 1) a large single reservoir (R1) stocked with waterhyacinth (Eichhornia crassipes), elodea (Egeria densa), and cattails (Typha sp.) in series; 2) three small reservoirs in series with waterhyacinth (R2), elodea (R3), and cattails (R4), grown in independent reservoirs; 3) a control reservoir (R5) with no cultivated plants; 4) a large single flooded field planted to cattails; 5) three small flooded fields in a series planted to cattails; and 6) a flooded field with no cultivated plants. Drainage water was pumped daily (6 hours a day, and 6 days a week) into these systems for a period of 27 months at predetermined constant flow rates. Water samples were collected at the inlet and outlet of each treatment system and analyzed for N and P forms.The series of reservoirs stocked with aquatic plants functioned effectively in the removal of N and P from agricultural drainage water, compared to a single large reservoir. Allowing the water to flow through the reservoir stocked with waterhyacinth plants with a residence time of 3.6 days was adequate to remove about 50% of the incoming inorganic N. Allowing the water to flow through a series of two small reservoirs, R2 and R3, with a residence time of 7.3 days was necessary to remove about 60% of the incoming ortho-P. Flooded fields were effective in the removal of inorganic N, but showed poor efficiency in the removal of ortho-P.Florida Agricultural Experiment Stations Journal Series No. 2320.  相似文献   

18.
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.  相似文献   

19.
20.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号