首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Lawyers, engineers, and hydrologists are accustomed to thinking of water law as falling into one of two incompatible models: riparian rights (under which water is allocated by courts according to the relative reasonableness of the competing uses) and appropriative rights (under which water is allocated according to the temporal priority of the competing uses, largely by the action of the water users themselves but perfected by the issuance of an administrative permit). Usually unnoticed is the existence of a third approach, which I have dubbed “regulated riparianism.” Under regulated riparianism, water is allocated by water permits issued after an administrative determination of the reasonableness of the proposed use before the use is commenced. This system, now in place in about half of the states east of Kansas City (plus Hawaii), thus is fundamentally different from either the traditional ripanan rights that it replaces or the appropriative rights found in western states.  相似文献   

2.
Transfers of treated water among inter-connected utilities is becoming more common as the cost of developing new supplies grows, and transfer agreements require well developed rules describing when and how much water will be transferred. The nature of the decision rules governing an agreement must also be coordinated with respect to the treatment and conveyance capacity required to execute the transfers. This study explores different combinations of infrastructure and agreement type that define three different transfer programs, describing the frequency and volume of transfers associated with each, as well as their costs. The agreements are described in terms of the type of decision rule employed: Take-or-Pay, where the timing and quantity of transfers is fixed; Days of Supply Remaining (DSR), which uses a static hydrologic indicator to trigger transfers; and Risk-of-Failure, a probability-based decision rule that involves consideration of both supply and demand. This analysis is conducted within the context of the Research Triangle area of North Carolina (USA), a rapidly growing area that is beginning to approach the practical limits of water resource development. The Risk-of-Failure agreement is shown to reduce the average volume of transfers by over 80% compared to a Take-or-Pay agreement and by roughly half relative to the DSR agreement, leading to significant cost reductions. A utility's willingness to accept something less than guaranteed access to a specified quantity of water (i.e. an interruption) also has a significant impact on cost. Interruptions do not necessarily lead to lower reliability, but rather to the purchasing utility acquiring more water during off-peak periods when the seller has excess treatment capacity available. The lowest cost guaranteed agreement is 40–50% more expensive than the lowest cost interruptible contract.  相似文献   

3.
ABSTRACT .Many growing municipalities near irrigated agriculture are advocating a transfer of water now utilized for irrigation to municipal use. Alternatives are presented whereby this water can be transferred to municipal use in exchange for treated sewage effluent. The irrigation water would in effect be cycled through the municipal system prior to use on the farms. A case study of the Tucson region illustrates the relevant legal, economic and technical aspects. Effluent could be delivered to irrigators in Avra Valley at a cost less than that now paid for water pumped from declining water tables. In return the City of Tucson could import ground water now being used for irrigation through an existing pipeline which presently cannot be used because of a court injunction obtained by the irrigators. It appears that such an exchange agreement could be made without modification of existing statutory law. Similar exchange arrangements may prove to be feasible in other regions containing irrigated agriculture. Increased efficiency of water use can be achieved avoiding external effects which commonly arise in a direct transfer and are difficult to evaluate. High quality water is allocated to municipal use whereas nutrient-rich sewage effluent is transferred to irrigation.  相似文献   

4.
The Food and Agriculture Organization's (FAO) land evaluation methodology provides a procedure for assessing the suitability of land units within a study area for different land uses. This article describes the use of theLuplan computerized land-use planning package to provide an explicit means to select the land use for each land unit which best satisfies defined policies. The use of the package is demonstrated in a study that allocated multiple use activities within a native forest.  相似文献   

5.
Assessment of the pollution of water bodies from non-point sources is a complex data- and time-consuming task. The potential non-point pollution index (PNPI), is a new tool designed to assess the global pressure exerted on rivers and other surface water bodies by different land uses. The main feature of PNPI is the wide availability of its input data. Very detailed input maps, often lacking over many areas, are not needed for PNPI calculation. As a consequence of the input data used, the modelling of physical reality and of processes is heavily simplified. The authors counterbalanced such a simplification using an 'expert system' approach. The system bypasses the accurate representation of the physical reality to assess globally the pollution potential of different land uses according to the judgement of scientists. The scientific community proposes many models for depicting the dynamics of pollutants coming from diffuse sources. Most of them can be grouped into two broad categories: statistical models and physically based models. PNPI belongs to neither of the above-mentioned groups. PNPI is a GIS-based, watershed-scale tool designed to inform decision makers and public opinion about the potential environmental impacts of different land management scenarios. PNPI applies the multicriteria technique to pollutant dynamics and water quality. The pressure exerted on water bodies by diffuse pollution coming from land units is expressed as a function of three indicators: land use, run-off and distance from the river network. They are calculated from land use data, geological maps and a digital elevation model (DEM). The weights given to different land uses and to the three indicators were set according to experts' evaluations and allow calculation of the value of the PNPI for each node of a grid representing the watershed; the higher the PNPI of the cell, the greater the potential impact on the river network. The output of the calculation is presented in the form of maps that highlight areas that are more likely to produce pollution. Last, possibilities, strategies and results of the validation of the PNPI are described. In the authors' view, the explicit link between land use and potential pollution on which PNPI is based, together with its high communication potential, make it particularly interesting for a participatory and integrated approach to land management and environmental protection.  相似文献   

6.
ABSTRACT: Prediction of future water demands depends on the degree to which conservation effects can be anticipated. A model developed for the Corps of Engineers shows that choosing a numerical conservation target to be achieved is more meaningful and yields more predictable results than price or price elasticity manipulations. The method developed and then applied to the Kaneohe Bay region of Oahu considers the following determinants of demand: geographic distribution of the users, indoor and outdoor requirements, time - by year and month of the year, precipitation, historical unit usage rates, gross and irrigable acreage of land uses, price for water, elasticity of demand with respect to price, source of the water supply (local private supplies vs. agency supplies), and the percentage conservation savings anticipated in each future period in indoor and outdoor uses of water in each of 40 possible land uses. While developed for use in Hawaii, the model is applicable generally.  相似文献   

7.
Process intensification is a concept that was recently introduced in the chemical industry for the purpose of reducing environmental emissions, energy consumption and materials consumption. The principle of process intensification can be used in related industries as well; textile finishing is an exemplary activity where it may have a significant long-term added value. Membrane technology can be a key factor in the recycling and reuse of energy, water and chemicals. In this paper, an integral approach for treatment of aqueous process streams in the textile finishing industry is proposed. The proposed process includes microfiltration pretreatment of used finishing baths, followed by a dual nanofiltration (NF) unit. These can be operated at elevated temperatures so that no further energy is needed for preheating of recycle streams. In the proposed treatment scheme, the first of the NF units uses a loose nanofiltration membrane that retains most of the organic fraction but not the dissolved salts. The second unit uses a tight nanofiltration membrane, which produces a permeate fraction that can be directly reused, and a concentrated brine that is fed to a membrane crystallizer. In this unit, salts are recovered and recycled for use in new dye baths. The concentrate stream from the first NF unit is fed to a membrane distillation unit, where the high temperature is advantageously used for further concentration. The remaining fraction is not reusable, given the fact that most dyes are hydrolyzed after exhaustion of the bath, but has a significant energetic value, which can be utilized for compensation of energy losses and preheating of suppletion water, by using an incineration process with energy recovery. The concept was not tested experimentally, but a simulation for a 500 m3/d production unit shows that it is feasible, although modifications may be necessary depending on the nature of the finishing baths. Furthermore, the membrane choice in the first NF unit is a critical aspect.  相似文献   

8.
Statistical methods are widely used in environmental studies to evaluate natural hazards. Within groundwater vulnerability in particular, statistical methods are used to support decisions about environmental planning and management. The production of vulnerability maps obtained by statistical methods can greatly help decision making. One of the key points in all of these studies is the validation of the model outputs, which is performed through the application of various techniques to analyze the quality and reliability of the final results and to evaluate the model having the best performance. In this study, a groundwater vulnerability assessment to nitrate contamination was performed for the shallow aquifer located in the Province of Milan (Italy). The Weights of Evidence modeling technique was used to generate six model outputs, each one with a different number of input predictive factors. Considering that a vulnerability map is meaningful and useful only if it represents the study area through a limited number of classes with different degrees of vulnerability, the spatial agreement of different reclassified maps has been evaluated through the kappa statistics and a series of validation procedures has been proposed and applied to evaluate the reliability of the reclassified maps. Results show that performance is not directly related to the number of input predictor factors and that is possible to identify, among apparently similar maps, those best representing groundwater vulnerability in the study area. Thus, vulnerability maps generated using statistical modeling techniques have to be carefully handled before they are disseminated. Indeed, the results may appear to be excellent and final maps may perform quite well when, in fact, the depicted spatial distribution of vulnerability is greatly different from the actual one. For this reason, it is necessary to carefully evaluate the obtained results using multiple statistical techniques that are capable of providing quantitative insight into the analysis of the results. This evaluation should be done at least to reduce the questionability of the results and so to limit the number of potential choices.  相似文献   

9.
Sewage discharge from an ocean outfall is subject to water quality standards, which are often stated in probabilistic terms. Monte Carlo simulation (MCS) has been used in the past to evaluate the ability of a designed outfall to meet water quality standards or compliance guidelines associated with sewage discharges. In this study, simpler and less computer-intensive probabilistic methods are considered. The probabilistic methods evaluated are the popular mean first-order second-moment (MFOSM) and the advance first-order second-moment (AFOSM) methods. Available data from the Spaniard's Bay Outfall located on the east coast of Newfoundland, Canada, were used as inputs for a case study. Both methods were compared with results given by MCS. It was found that AFOSM gave a good approximation of the failure probability for total coliform concentration at points remote from the outfall. However, MFOSM was found to be better when considering only the initial dilutions between the discharge point and the surface. Reasons for the different results may be the difference in complexity of the performance function in both cases. This study does not recommend the use of AFOSM for failure analysis in ocean outfall design and analysis because the analysis requires computational efforts similar to MCS. With the advancement of computer technology, simulation techniques, available software, and its flexibility in handling complex situations, MCS is still the best choice for failure analysis of ocean outfalls when data or estimates on the parameters involved are available or can be assumed.  相似文献   

10.
Abstract: New criteria, pollutant load of unit area (PLUA), are developed for sustainable water quality management, which not only avoids degrading water quality but also considers the equity of development between different generations. A simulation‐optimization model is established to determine PLUA, in which uses the QUAL2E model to simulate pollutant transport and formulates a linear programming model to optimize the objective of maximal loads (carrying capacity). Two watersheds, the Touchen creek and the Keya creek, both in Taiwan, are taken as case studies. The PLUA criterion is applied to several existing projects which have passed environmental impact assessment (EIA). The results show that if the Hsinchu Science‐Based Industrial Park discharges wastewater to the Touchen creek, the total pollutant discharge of 85.6 kg/day exceeds the allocated load. Consequently, a waste reduction of at least 23.4% is required. Although these existing projects have passed EIA, most of them violate the criterion of PLUA and thus contribute to continued degradation of water quality. This study suggests developing PLUA as a part of the process of strategic environmental assessment (SEA) for watershed management plans and then applying it to EIA as a criterion for new project assessment. Furthermore, if carrying capacities of all pollutant discharges and resource uses can be translated into loads per unit of area, an integrated sustainable watershed management plan can be developed.  相似文献   

11.
A method is presented which combines environmental indices and estimates of inputs from various land uses to aid in environmental impact assessments. Unweighted pair/group cluster analyses are used to obtain relationships between easily observable environmental indices, such as vegetation types, soils, and geology, based on their mutual recurrence. These relationships are shown by using an ordination technique which shows the nature of complex impacts on a natural system. Results are used to develop anenvironmental effects sequence diagram based on known scientific and engineering principles and observed natural relationships. The diagram may be used in conjunction with land use data to estimate the possible magnitude of impacts on the pre-existing system which may result from such land use. Several examples are developed which quantify inputs from various land uses and which compare them with environmental inputs including point source and non-point source liquid and atmospheric emmissions, land modifications, and resource consumption. Known average values are used and a separate comparison is made in describing the vast differences between the project phases of construction versus longterm operation. A hypothetical environmental impact assessment is given for a small residential development in Chambers County, Texas, U.S. of A.  相似文献   

12.
The appropriate design and evaluation of a rainwater harvesting (RWH) system is necessary to improve system performance and the stability of the water supply. The main design parameters (DPs) of an RWH system are rainfall, catchment area, collection efficiency, tank volume and water demand. Its operational parameters (OPs) include rainwater use efficiency (RUE), water saving efficiency (WSE) and cycle number (CN). The sensitivity analysis of a rooftop RWH system's DPs to its OPs reveals that the ratio of tank volume to catchment area (V/A) for an RWH system in Seoul, South Korea is recommended between 0.03 and 0.08 in terms of rate of change in RUE. The appropriate design value of V/A is varied with D/A. The extra tank volume up to V/A of 0.15~0.2 is also available, if necessary to secure more water. Accordingly, we should figure out suitable value or range of DPs based on the sensitivity analysis to optimize design of an RWH system or improve operation efficiency. The operational data employed in this study, which was carried out to validate the design and evaluation method of an RWH system, were obtained from the system in use at a dormitory complex at Seoul National University (SNU) in Korea. The results of these operational data are in good agreement with those used in the initial simulation. The proposed method and the results of this research will be useful in evaluating and comparing the performance of RWH systems. It is found that RUE can be increased by expanding the variety of rainwater uses, particularly in the high rainfall season.  相似文献   

13.
ABSTRACT: A basic problem in the management of rivers has been how to balance the tradeoffs between instream and out-of-stream uses. Traditionally, the problem has been addressed by optimizing the economic benefits of flow diversions and regulated releases with instream uses as a flow constraint. An alternative method is to model the effect different river flows have on various recreational uses (e.g., boating, fishing) and then use the results as an additional function or piece of information to determine river project operations and benefits. A methodology that is based on multiobjective decision theory and that relates instream recreational preferences to river flow is proposed. The methodology consists of determining, standardizing, and combining recreational benefit functions, and incorporating potential sources of uncertainty into an estimate of total instream benefits. Thus different types of flow patterns, resulting from reservoir regulation (out-of-stream water uses), can be analyzed to determine their potential instream impact. The methodology is applied to the New River Gorge, West Virginia, which has been designated as a National River.  相似文献   

14.
Continental waters are complex resources in terms of a measurable physical quantity, and measuring them requires a good knowledge of total water availability. In this research, an accounting physical input–output table (PIOT) was applied to evaluate total water resources and gross annual availabilities at each stage of the natural-artificial water cycle. These stages are considered subsystems of a continental water resource system describing water transfers for an average year within 13 administrative basins of Spain. Water transfers between various subsystems are characterized by internal flows decreasing the water resource availabilities. The PIOT analysis establishes these internal flows, and the origins and final uses of the total resources for each subsystem. The input-output balance registered an unsustainable negative net accumulation in eight water basins. The PIOT analysis also allowed the calculation of significant indicators such as water resource developments (RDI) and their sustainable use (SUI). RDI and SUI demonstrate that groundwater is a critical resource affecting the environment (e.g., wetlands in the upper Guadiana) and the water supply (e.g., irrigation in the Segura basin). The results of this model suggest that above-/below-ground hydrological links are important when decisions have to be made in order to provide a satisfactory supply of water in Spain. The model integrates the different water basins under territorial criteria, and therefore it may be useful for the Spanish National Hydrological Plan.  相似文献   

15.
States and tribes are encouraged to use multiple biological assemblages in assessment of water bodies. An assessment index for each assemblage provides information on aspects of the aquatic resource that may be unique in terms of stressor sensitivity, stressor type, or ecological scale. However, assessment results relative to impairment thresholds can disagree among indices for an individual water body, leading to uncertain overall water‐body assessments. We explored options for combining stream indices for macroinvertebrates, fish, and habitat in ways that would yield the most consistent and sensitive results relative to established disturbance categories. Methods varied in the scoring or rating scales used to standardize each index value, the thresholds used to define impairment of aquatic life uses, and the ways of synthesizing multiple indices. The index compositing method that scores each index on a continuous scale and averages the scores after standardizing had superior accuracy, sensitivity, and precision. In addition, using the 25th quantile of reference sites instead of the 10th quantile resulted in a more balanced error rate among reference and degraded site categories.  相似文献   

16.
本文讲述了对新产品进行可靠性评估的方法,这些产品因为受到环境的影响而失效。本方法适用于有参考产品现场数据、参考产品加速老化数据,并了解由环境引起失效机理的情况。该方法利用可靠性原理和失效机械一模型来建立高精度的模型,然后用它来预测新产品的使用寿命。本方法已成功应用于两个实例:一个是采用化学与物理方法证明聚烯烃的现场数据与加速氙灯老化仪所测得的数据具有相关性;另一个是评估乙烯基产品及现场驱动失效的故障模式。所得出的数据结果表明了环境区域风险、整体新产品风险。及与现有参考产品的相对风险。  相似文献   

17.
ABSTRACT: The quality of ground water in any aquifer takes its final form due to natural mixture of waters, which may originate from different sources. Water quality varies from one aquifer to another and even within the same aquifer itself. Different ground water quality is obtained from wells and is mixed in a common reservoir prior to any consumption. This artificial mixing enables an increase in available ground water of a desired quality for agricultural or residential purposes. The question remains as to what proportions of water from different wells should be mixed together to achieve a desired water quality for this artificial mixture. Two sets of laboratory experiments were carried out, namely, the addition of saline water to a fixed volume of fresh water. After each addition, the mixture volume and the electric conductivity value of the artificially mixed water were recorded. The experiments were carried out under the same laboratory temperature of 20°C. A standard curve was developed first experimentally and then confirmed theoretically. This curve is useful in determining either the volume or discharge ratio from two wells to achieve a predetermined electrical conductivity value of the artificial mixture. The application of the curve is given for two wells within the Quaternary deposits in the western part of the Kingdom of Saudi Arabia.  相似文献   

18.
In watershed management the effects of plants on water cannot be considered a constant and forgotten because: plants of different sizes and forms use water at different rates and plants of the same size differ in their needs for water because of anatomical differences. Many common denominators are present in all watersheds covered by vegetation. Forces exerted on the soil water by vegetation, climate and soil are the same kinds of forces. The differences between watersheds in water yield potential appear to be due to differences in the degree in which these forces are exerted. However, the influence of biotic factors are more individual. The similarities and differences existing between watersheds suggest some principles that can be used as guides to understanding individual watershed problems and as possible guides to determining when, how, and where to treat a given watershed. Eleven principles are given and their application to the definition and solution of biological or vegetational problems of watershed management are discussed.  相似文献   

19.
Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model.A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions.  相似文献   

20.
ABSTRACT: Private lakeshore development usually precedes establishment of public lake access. As a result, the best access areas are often occupied before public access is provided. The public then has a problem to provide access for nonriparian citizens. This problem can be anticipated and prevented by classifying undeveloped lakeshore areas according to suitability for both private and public uses, and incorporating appropriate recommendations into the municipal, comprehensive land use plan. To accomplish this, a site evaluation system has been developed which numerically rates the lakeshore for each of four public uses: public beaches, picnic areas, boat access areas, and public marinas; and two private uses: private marinas and vacation homes. Ratings are developed for: slope, soil suitability, shoreland type, water quality, site location, scenery, and road access. These ratings are combined with a statement of public goals developed from attitude surveys to produce a lakeshore land use plan. The plan recommends that lakeshore areas best suited for private development are so used, and areas best suited for public use are reserved for that purpose. This site evaluation system is demonstrated by a case study on Lake Champlain in Ferrisburg, Vermont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号