共查询到20条相似文献,搜索用时 15 毫秒
1.
John M. Bartholow 《Journal of the American Water Resources Association》2010,46(5):892-906
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract: It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river’s natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river’s channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. 相似文献
2.
J. R. Williams 《Journal of the American Water Resources Association》1975,11(5):965-974
ABSTRACT: A sediment routing technique was developed to route sediment yield from small watersheds through streams and valleys to the outlet of large watersheds. The technique is based on the modified universal sol loss equation and a first order decay function of travel time and particle size. Deposition is dependent upon settling velocities of sediment particles, travel time, and the amount of sediment in suspension. Sediment routing increases sediment yield prediction accuracy and allows determination of subwatershed contributions to the total sediment yield. Also, the locations and amounts of floodplain scour and deposition can be predicted. Another advantage of sediment routing is that measured sediment yield data are not required. The procedure performed satisfactorily in test routings on two Texas blackland watersheds Sediment routing will be useful in flood control evaluation, reservoir and channel design, water quality calculations, environmental impact assessment, and land-use planning. 相似文献
3.
Gregory C. Goodrum Sarah E. Null 《Journal of the American Water Resources Association》2023,59(1):107-126
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models. 相似文献
4.
J. K. Finkenbine J. W. Atwater D. S. Mavinic 《Journal of the American Water Resources Association》2000,36(5):1149-1160
ABSTRACT: Urban development has compromised the quality of physical elements offish habitat in low‐order spawning and rearing streams. In order to identify where priorities should lie in stream rehabilitation, field surveys of a number of streams were conducted near Vancouver, British Columbia. All of the streams were located in watersheds which were urbanized approximately 20 years earlier. The study watersheds ranged from 5 to 77 percent total impervious area (percent TIA). The urban streambeds were found to have less fine material and slightly higher values of intragravel dissolved oxygen than in rural streams. This improved gravel quality is attributed to the higher peak flows generated by impervious areas, and the reduced recruitment of fine material in the urban watersheds. Summer base flow was uniformly low when imperviousness was above 40 percent, evidenced by a decrease in velocity rather than water depth. Large woody debris (LWD) was scarce in all streams with > 20 percent TIA. A healthy buffer zone and abundant LWD were found to stabilize stream banks. The introduction of LWD is considered the most important strategy for stream rehabilitation. Stormwater detention ponds, in contrast, are concluded to have few hydrological benefits if constructed after a stream has reached its urban equilibrium. 相似文献
5.
A 30 x 0.9 cm piece of steel rod bent in the shape of an “L” and attached by hose clamps to a 15 x 3.2 cm section of plastic pipe sliding on an 86 x 1.9 cm steel shaft was tested for use in measuring scour and fill of salmon spawning riffles. Installed along channel cross-sections, results of tests at four sites on two hydraulically different streams showed the device to be useful in monitoring event specific scour and fill. Measurement error was estimated to be ± 10 mm. 相似文献
6.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1991,27(4):667-677
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific. 相似文献
7.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2002,38(3):663-680
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities. 相似文献
8.
9.
Rebecca S. Wargo Richard N. Weisman 《Journal of the American Water Resources Association》2006,42(4):989-995
ABSTRACT: Single‐barrel culverts are a common means of roadway crossings for smaller streams. While this culvert design provides an economical solution for a crossing, the adverse effects of conveying the stream through a single opening can be far reaching. The single‐barrel culvert is typically sized for a design storm much greater than the channel forming discharge. This oversizing causes an interruption of the normal flow patterns and sediment transport for the system. Shallow depths at low flow in the pipe and perching at the outlet can impede fish passage. Multicell culverts (where the main culvert at the channel invert is sized for bankfull discharge, and additional pipes are placed at the floodplain elevation to convey overbank flow up to the design discharge) have been recommended as a best management practice to minimize erosion and improve fish passage. This flume study scaled a prototype single‐barrel culvert to both a single‐cell model, and a multicell design to compare outlet scour and flow depths within the culvert. The results provide designers and planners with evidence of the benefits of multicell culverts to justify the higher cost of installation compared to single‐barrel culverts. 相似文献
10.
Abstract: Stream and riparian managers must effectively allocate limited financial and personnel resources to monitor and manage riparian ecosystems. They need to use management strategies and monitoring methods that are compatible with their objectives and the response potential of each stream reach. Our objective is to help others set realistic management objectives by comparing results from different methods used to document riparian recovery across a diversity of stream types. The Bureau of Land Management Elko Field Office, Nevada, used stream survey, riparian proper functioning condition (PFC) assessment, repeat photographic analysis, and stream and ecological classification to study 10 streams within the Marys River watershed of northeast Nevada during all or parts of 20 years. Most riparian areas improved significantly from 1979 to 1992‐1993 and then additionally by 1997‐2000. Improvements were observed in riparian and habitat condition indices, bank cover, and stability, pool quality, bank angle, and depth of undercut bank. Interpretation of repeat photography generally confirmed results from stream survey and should be part of long‐term riparian monitoring. More attributes of Rosgen stream types C and E improved than of types B and F. A and Gc streams did not show significant improvement. Alluvial draws and alluvial valleys improved in more ways than V‐erosional canyons and especially V‐depositional canyons. Stream survey data could not be substituted for riparian PFC assessment. Riparian PFC assessments help interpret other data. 相似文献
11.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2006,42(4):1047-1062
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable. 相似文献
12.
13.
Bodie JR 《Journal of environmental management》2001,62(4):443-455
The regulation and management of stream ecosystems worldwide have led to irreversible loss of wildlife species. Due to recent scrutiny of water policy and dam feasibility, there is an urgent need for fundamental research on the biotic integrity of streams and riparian zones. Although riverine turtles rely on stream and riparian zones to complete their life cycle, are vital producers and consumers, and are declining worldwide, they have received relatively little attention. I review the literature on the impacts of contemporary stream management on freshwater turtles. Specifically, I summarize and discuss 10 distinct practices that produce five potential biological repercussions. I then focus on the often-overlooked use of riparian zones by freshwater turtles, calculate a biologically determined riparian width, and offer recommendations for ecosystem management. Migration data were summarized on 10 species from eight US states and four countries. A riparian zone encompassing the majority of freshwater turtle migrations would need to span 150 m from the stream edge. Freshwater turtles primarily chose high, open sandy habitats to nest. Nests in North America contained eggs and hatchlings during April through September and often through the winter. In addition, freshwater turtles utilized diverse riparian habitats for feeding, nesting, and overwintering. Additional documentation of stream and riparian habitat use by turtles is needed. 相似文献
14.
Transient fish spawning aggregations (FSAs) are critical life-cycle events for many commercially important species, in which fish congregate in huge numbers to spawn at predictable times and places. This behavior makes them exceptionally vulnerable to fishing. The “illusion of plenty” and poor access to monitoring tools and techniques has resulted in some FSAs being overfished or unwittingly eliminated. We present a co-conservation network, formally linking site-focused partners who cooperatively monitor and actively manage multispecies FSAs. FSA sites and networks offer great potential as conservation bright spots to replenish fished populations, rehabilitate marine ecosystems, and ensure the flow of ecosystem services to the millions of people that rely upon them for their wellbeing. We call for urgent global recognition of FSAs as effective spatial nexus for addressing multiple interconnected global policy targets for a sustainable ocean. 相似文献
15.
Jacob A. Zwart Samantha K. Oliver William David Watkins Jeffrey M. Sadler Alison P. Appling Hayley R. Corson-Dosch Xiaowei Jia Vipin Kumar Jordan S. Read 《Journal of the American Water Resources Association》2023,59(2):317-337
Deep learning (DL) models are increasingly used to make accurate hindcasts of management-relevant variables, but they are less commonly used in forecasting applications. Data assimilation (DA) can be used for forecasts to leverage real-time observations, where the difference between model predictions and observations today is used to adjust the model to make better predictions tomorrow. In this use case, we developed a process-guided DL and DA approach to make 7-day probabilistic forecasts of daily maximum water temperature in the Delaware River Basin in support of water management decisions. Our modeling system produced forecasts of daily maximum water temperature with an average root mean squared error (RMSE) from 1.1 to 1.4°C for 1-day-ahead and 1.4 to 1.9°C for 7-day-ahead forecasts across all sites. The DA algorithm marginally improved forecast performance when compared with forecasts produced using the process-guided DL model alone (0%–14% lower RMSE with the DA algorithm). Across all sites and lead times, 65%–82% of observations were within 90% forecast confidence intervals, which allowed managers to anticipate probability of exceedances of ecologically relevant thresholds and aid in decisions about releasing reservoir water downstream. The flexibility of DL models shows promise for forecasting other important environmental variables and aid in decision-making. 相似文献
16.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1997,33(3):647-659
ABSTRACT: The precision of width and pool area measurements has rarely been considered in relation to downstream or at section hydraulic geometry, fisheries studies, long-term or along a continuum research studies, or agency monitoring techniques. We assessed this precision and related it to other stream morphologic characteristics. Confidence limits (95 percent) around mean estimates with four transects (cross-sections perpendicular to the channel center-line) ranged from ± 0.4 to 1.8 m on streams with a width of only 2.2 m. To avoid autocorrelation, transects should be spaced about three channel widths apart. To avoid stochastic inhomogeneity, reach length should be about 30 channel widths or ten transects to optimize sampling efficiency. Precision of width measurements decreased with decreased depth and increased with stream size. Both observations reflect variability caused by features such as boulders or coarse woody debris. Pool area precision increased with pool area reflecting increased precision for flat, wide streams with regular pool-rime sequences. The least precision occurred on small, steep streams with random, boulder or coarse woody debris formed pools. 相似文献
17.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1996,32(2):253-265
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys. 相似文献
18.
This paper describes a method for predicting local scour around bridge piers using an artificial neural network (ANN). Methods for selecting input variables, calibrations of network control parameters, learning process, and verifications are also discussed. The ANN model trained by laboratory data is applied to both laboratory and field measurements. The results illustrate that the ANN model can be used to predict local scour in the laboratories and in the field better than other empirical relationships that are currently in use. A parameter study is also carried out to investigate the importance of each input variable as reflected in data. 相似文献
19.
Bree R. Mathon Donna M. Rizzo Michael Kline Gretchen Alexander Steve Fiske Richard Langdon Lori Stevens 《Journal of the American Water Resources Association》2013,49(2):415-430
Watershed managers often use physical geomorphic and habitat assessments in making decisions about the biological integrity of a stream, and to reduce the cost and time for identifying stream stressors and developing mitigation strategies. Such analysis is difficult since the complex linkages between reach‐scale geomorphic and habitat conditions, and biological integrity are not fully understood. We evaluate the effectiveness of a generalized regression neural network (GRNN) to predict biological integrity using physical (i.e., geomorphic and habitat) stream‐reach assessment data. The method is first tested using geomorphic assessments to predict habitat condition for 1,292 stream reaches from the Vermont Agency of Natural Resources. The GRNN methodology outperforms linear regression (69% vs. 40% classified correctly) and improves slightly (70% correct) with additional data on channel evolution. Analysis of a subset of the reaches where physical assessments are used to predict biological integrity shows no significant linear correlation, however the GRNN predicted 48% of the fish health data and 23% of macroinvertebrate health. Although the GRNN is superior to linear regression, these results show linking physical and biological health remains challenging. Reasons for lack of agreement, including spatial and temporal scale differences, are discussed. We show the GRNN to be a data‐driven tool that can assist watershed managers with large quantities of complex, nonlinear data. 相似文献
20.
Rebecca J. Wade Bruce L. Rhoads Jose Rodriguez Melinda Daniels David Wilson Edwin E. Herricks Fabian Bombardelli Marcelo Garcia John Schwartz 《Journal of the American Water Resources Association》2002,38(4):931-944
ABSTRACT: Many urban and suburban communities in the Midwest are seeking to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems — a process known as stream naturalization. This paper describes an integrated research program that seeks to develop a scientific and technological framework to support two stream naturalization projects near Chicago, Illinois. The research program integrates theory and methods in fluvial geomorphology, aquatic ecology, hydraulic engineering and social theory. Both the conceptual and the practical challenges of that integration are discussed. Scientific and technical support emphasize the development of predictive tools to evaluate the performance of possible naturalization designs at scales most appropriate to community based projects. Social analysis focuses on place based evaluations of how communities formulate an environmental vision and then, through decision making, translate this vision into specific stream naturalization strategies. Integration of scientific and technical with social components occurs in the context of community based decision making as the predictive tools are employed by project scientists to help local communities translate their environmental visions into concrete environmental designs. Social analysis of this decision making process reveals how the interplay between the community's vision of what they want the watershed to become, and the scientific perspective on what the watershed can become to achieve the community's environmental goals, leads to the implementation of specific stream naturalization practices. 相似文献