首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   

2.
ABSTRACT: A Geographic Information System (GIS) was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. As mandated by state law, water-use data are reported by ground-water withdrawers annually to the Arkansas Soil and Water Conservation Commission, and stored in the Arkansas Site-Specific Water-Use Data System provided and supported by the U.S. Geological Survey. Although most withdrawers are able to provide the amount of water withdrawn and the depth of their wells, very few are able to provide the name of the aquifer from which they withdraw water. GIS software was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. The software was used to generate a spatial representation of the bottom boundary for the Mississippi River Valley alluvial aquifer (the shallowest aquifer) in eastern Arkansas from well log-data collected by the U.S. Geological Survey. The software was then used to determine the depth of the aquifer bottom at reported well locations to ascertain whether the Mississippi River Valley alluvial aquifer or a deeper aquifer was the primary aquifer providing water to each well. The alluvial aquifer was identified as the primary aquifer for about 23,500 wells.  相似文献   

3.
ABSTRACT. New Jersey, together with other states in the northeast, was stricken with drought during 1961-66. The effect of this drought was most severe in the northern part of the State. The water quality of the Passaic River, which drains the urban, industrialized northeast, perhaps deteriorated the most among the major drainage systems. This river system is used as a raw-water source by 10 water suppliers. The impact of the drought upon the water supply of the Passaic Valley Water Commission, the most downstream of the basin's suppliers, which supplies an average of about 90 million gallons a day to more than 650,000 persons, is evaluated herein. The drought's impact on the raw-water quality is appraised by the comparison of before-and-after qualities of dissolved solids, dissolved oxygen, biochemical-oxygen demand, turbidity, and hardness. For example, at the worst point during the drought, monthly average dissolved-solids content in the raw water were about 210 percent, hardness, about 167 percent, and biochemical-oxygen demand about 270 percent higher than antecedent values. In general, the study concludes that the drought produced a deterioration in both raw and finished water quality, and is estimated to have increased chemical-treatment costs during the drought by about $650,000.  相似文献   

4.
ABSTRACT: Land use planning in rapidly developing areas can serve as an effective tool for minimizing water quality impacts on ground water supplies. A land use management model applied to Jackson Township of the New Jersey Pine Barrens was developed. The management model consisted of a simulation model for the transport of nitrates from septic tank systems through the aquifer and a multiobjective, goal programming optimization model to determine population density restrictions using 208 areawide planning population projections. Results showed that growth may have to be curtailed in several areas of Jackson Township and that current population projections over the next 30 years may result in unacceptably high nitrate concentrations downgradient of Jackson Township. The management framework provides a flexible approach to land use planning.  相似文献   

5.
ABSTRACT: The distribution of trace elements in New Jersey streambed sediments is described with respect to physiographic provinces and major drainage areas. Samples were collected during 1976–1993 at 295 sites distributed throughout New Jersey. Copper, chromium, lead, and zinc were detected with the greatest frequency and at the highest concentrations of the elements. Concentrations of most trace elements were significantly higher in streambed sediments from the New England (glaciated) and Piedmont physiographic provinces - the provinces with the lowest and highest percentages of urban land use, respectively - than in sediments from the other provinces. High trace-element concentrations in the New England (glaciated) province reflect previous mining of extensive magnetite deposits, whereas those in the Piedmont province most likely reflect urban land use. Significantly lower trace-element concentrations in streambed sediments from the Coastal Plain are attributable to the low pH of the streamwater, the lack of iron and manganese available to form coatings that scavenge trace elements, and the relatively low percentage of urban land use in the province. Trace-element concentrations were related to land use, population, or point sources in the drainage basin specific to the sampling location by using logistic regression. Results of this analysis indicate a relation between arsenic and agricultural land use; chromium and physiographic province; and copper, lead, and zinc and population density.  相似文献   

6.
ABSTRACT This paper deals with the application of a two-dimensional, saltwater intrusion model to the aquifer in Northern Guam. The model used finite element theory and the Galerkin, weighted-residual technique as its basis. The Northern Guam lens was discretized into 299 linear, triangular elements and 189 nodes. The model was calibrated using 1978 hydrologic data. The output of the model was compared with measured water levels in six observation wells. The calibrated values of permeability and porosity were then used to verify the model using 1979 data. A calibrated and verified model can be used to make an infinite variety of management and planning studies. In this study, three applications are provided that would be considered typical management runs. Steady state runs were made to compare the four conditions of no pumping, 1978 pumping levels, twice 1978 pumping levels, and five times 1978 pumping levels. The water levels due to these conditions are shown in plan and in cross sections of the aquifer. The effect of zero recharge to the aquifer is next demonstrated for the pumping levels existing during 1978. The final run shows how long the aquifer takes to reach steady state when the pumping rate is increased from the 1978 pumping level to twice that value. The program can be used for numerous other studies for management and planning purposes.  相似文献   

7.
Steady state experimental studies with a viscous analog of the aquifer system in central Long Island, New York, have shown there to be significant interaction between surface accretion, stream base flow, well recharge, and the degree of salt water intrusion. Reductions in accretion are found to cause a proportionately larger decrease in stream base flow. The degree of intrusion is found to be related to the distribution of accretion and well recharge between stream base flow and submarine flow to the sea. This interaction poses a conflict between development of the groundwater resource and maintenance of the surface water resource. Well recharge apparently offers a potential solution to the conflict.  相似文献   

8.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

9.
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

10.
ABSTRACT: A vertical (laterally integrated) two‐dimensional numerical model has been applied to study the hydrodynamic characteristics and salt water intrusion in the Tanshui River estuarine system. The cross‐sectional profiles measured in 1978 and 1994 are schematized for model simulations. Detailed model calibration and verification have been conducted with water surface elevations, tidal current, salinity distributions, and residual velocities measured. The overall performance of the model is in qualitative agreement with the available field data. The model was then used to study how hydrodynamics and salt water intrusion change in response to changes in bathymetry. The model simulations indicate that more tidal energy propagates into the estuarine system in 1994 because of the substantial increase in river cross‐sections. The limits of salt intrusion in 1994 extended farther inland than those in 1978. On the other hand, the extent of mangrove wetland in the lower estuary has increased over the past 20 years and is likely a result of the increased salinity in the estuary.  相似文献   

11.
ABSTRACT: Variables that describe well construction, hydrogeology, and land use were evaluated for use as possible indicators of the susceptibility of ground water in bedrock aquifers in the Newark Basin, New Jersey, to contamination by nitrate from the land surface. Statistical analyses were performed on data for 132 wells located throughout the Newark Basin. Concentrations of nitrate (as nitrogen) did not exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter (mg/L) in any of the water samples (U.S. Environmental Protection Agency, 1991). Variables that describe hydrogeology and well construction were found not to be statistically significant in relation to concentrations of nitrate. This finding can be attributed to the complex nature of flow in bedrock aquifers and mixing of water from shallow and deep water-bearing zones that occurs within these wells, which are constructed with long open intervals. Distributions of nitrate concentrations were significantly different among land-use groups on the basis of land use within both a 400 and an 800-m radius zone of the well. The median concentrations of nitrate (as N) in water from wells in predominantly urban-residential (2.5 mg/L) and agricultural areas (1.8 mg/L) were greater than the median concentration of nitrate in water from wells in predominantly undeveloped areas (0.5 mg/L).  相似文献   

12.
ABSTRACT: The Biscayne Aquifer is the sole source of drinking water for approximately three million residents of southeast Florida. Nine hazardous waste sites on the EPA National Priority List overlie this aquifer. Extensive investigation of an 80 square-mile area in metropolitan Miami detected low to moderate levels of toxic contaminants in the ground water, with volatile organic chemicals the most prevalent. The Centers for Disease Control concluded that contamination of the aquifer within the study area poses a serious potential threat to public health. Recommendations for source control and cleanup have been partially carried out. The top few feet of soil at the Miami Drum site have been excavated and relocated; ground water encountered during excavation has been withdrawn and treated, and the Northwest 58th Street Landfill has been closed. Recovery and treatment of ground water from the contaminated area was the recommended cleanup measure and has been approved by EPA and state and local agencies. A preventive action program for the Biscayne Aquifer region was also recommended for implementation by local agencies. This program consists of regulations, waste management practices, construction and treatment guidelines, and public information activities and materials. Implementing this program will help keep the Biscayne Aquifer water drinkable far into the future.  相似文献   

13.
ABSTRACT. This study investigates economies associated with size of New England water utilities. Regression analysis techniques were applied to annual water cost and production data reported in the American Directory of Water Utilities (1968-1969). Modest economies of size in the production of water were found. Because in large communities more water is used per person, total cost increases at a slightly faster rate than population increases, but per unit costs of producing water decline. Substantial economies occurred when the number of customers was held constant and volume of water per customer increased. This study indicates possible economies when two or more of the many very small utilities combine activities to form a larger unit and by encouraging present customers to use more water.  相似文献   

14.
ABSTRACT: Salinity increases in water in some parts of the Nava-jo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the lsmay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field are not the source of salinity increases in the Navajo aquifer.  相似文献   

15.
ABSTRACT: Specific capacity data obtained from Well Construction reports which are available from USGS offices, can provide useful estimates of tranamissivity (T), and hydraulic conductivity (K), of an aquifer. The Chicot Aquifer in Louisiana is one of the largest sources of fresh ground water in North America. Hydrologic data collected for the Chicot Aquifer indicate that specific capacity tests can be used in estimating local and regional values for T and K, if the Cooper-Jacob equation for transient flow is used with proper corrections for well loss and partial penetration. Where full scale pumping test data are scarce, specific capacity test data that are adequately distributed spatially can be used to map changes in T and K values and can be summarized statistically to indicate applicable regional values. A computer program called “TGUESS” which is available from International Ground Water Modeling Center, Holcomb Research Institute, was used in this study. The contour maps for T and K values are prepared for different well depth intervals to avoid wide variation of values.  相似文献   

16.
ABSTRACT: In order to determine appropriate application rates and to ensure low pollutant levels in sewage sludge, knowing the chemical composition of sewage sludge is of great importance in a land application program. The objective of this study is to evaluate the variability of selected chemical characteristics of sewage sludge from New Jersey publicly owned treatment works (POTWs). Measurements of total Kjeldahl nitrogen (TKN), NH4+‐N, P, K+, Cd, Cu, Pb, and Zn reported by 98 facilities in the 1996 and 1997 New Jersey Sludge Quality Assurance Regulations (SQAR) reports were statistically analyzed. Sewage sludge from Category 5 POTWs (greater than 10 percent industrial input) showed higher Cd, Cu, and Pb concentrations than Category 3 and Category 4 facilities (less than 10 percent industrial input). Even though only two years of data were analyzed, there was an indication that Cd and Pb concentrations in sewage sludge are decreasing with time. The yearly mean of only a few facilities exceeded the federal pollution concentration limits (40 CFR Part 503, Table 3). Phosphorus and Cd values showed the highest variability within facilities based on the coefficient of variation. Due to the variability of sewage sludge constituents, the use of the yearly rolling mean of nutrient concentrations to determine application rates was considered inadequate. An actual analysis of the sewage sludge to be applied is more appropriate to determine application rates than historical data.  相似文献   

17.
The New Lead. Belt of southeastern Missouri has recently become the largest lead producing region of the world. The impact of this rapid development on the previously rural and undeveloped region of the Missouri Ozarks is the subject of a continuing interdisciplinary study. Since the industrial development began, there have been a number of nuisance biological blooms in several of the small streams receiving effluent from the mines and mills. The major constituents of the problem algal growths were identified and found to include: Cladophora, Oscillatoria, Mougeotia, Zygnema, Spirogyra, Cymbella, and a variety of other stalked and non-stalked diatoms. Secondary blooms of Sphaerotilus were observed to reach problem proportions in some streams, particularly in the autumn. Finely ground rock flour and mineral particles escaping from tailings dams were found to be trapped by the stream vegetation. Concentrations of lead, zinc, copper, and manganese in the algal and bacterial mats were found to be inversely related to distance downstream from the tailings dams. Consumer organisms, including crayfish, snails, aquatic insects, tadpoles, minnows and larger sunfish were analyzed to determine the extent of dissemination and concentration of the heavy metals through food chains. Preliminary results indicated insignificant concentrations of heavy metals in those consumer organisms studied, though in at least one problem stream the normal consumer organisms mentioned were markedly reduced in numbers.  相似文献   

18.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

19.
ABSTRACT: Most of California's precipitation falls at the wrong place in the wrong season in relation to the water needs. Redistribution and regulation are essential. Aquifer systems – groundwater basins – can provide a share of the future cyclic storage regulation. There are some differences in management concepts in using a full basin in comparison with a partially dewatered basin. Legal, water quality, and physical impacts on aquifer systems, including subsidence, are concerns. Storage may be for the benefit of overlying water users or for distant areas. Extraction during dry periods or recharge methods will require careful planning. Existing rights and uses and equitable treatment of all parties must be assured. Financial compensation may be involved. Changes in methods of operation or degree of self-determination by affected water agencies will require committed watermanship to resolve. Legislation or amendments to organic acts may be needed but much can be accomplished within existing statutes. Environmental impacts which can be avoided by not using large surface storage sites are important. Energy for pumping will be a key consideration. About 40 percent of California is underlain by aquifer systems. This resource offers major potential in overcoming the maldistribution of natural water resources.  相似文献   

20.
ABSTRACT: Irrigation development of the dolomite aquifer in eastera Kankakee and northern Iroquois Counties, Illinois, is extensive and increasing. Interruptions of domestic supplies have been reported with increasing frequency during the 1980's. To address this issue, a regional assessment of the ground-water resources of the region was conducted in 1987 and 1988. Options for managing the dolomite aquifer were also investigated. Hydrogeology of the dolomite aquifer was determined using five aquifer tests. Tranamissivity values of the dolomite aquifer ranged from 14,000 to 50,000 gpd/ft (168 to 600 m3/m/day). Storage coefficients were between 0.0001 and 0.0002, within the range of a confined (artesian) aquifer. Based on flow-net analyses, recharge of the dolomite aquifer ranged from 85,000 to 285,000 gpd/mi2 (124.4 to 417.0 m3/day/km2). Water levels of the dolomite aquifer were mapped during five periods in 1987 and 1988 by measuring up to 226 wells completed in the dolomite aquifer. Maximum regional water-level declines because of irrigation pumpage were 44 feet (13.4 m) in 1987 and 72 feet (21.9 m) during the drought of 1988. Based on ground-water use data, precipitation records, and hydrogeologic information, the magnitude of water-level declines can be attributed more to differing hydrogeologic conditions than to pumpage or climatic changes. Existing ground-water management methods for resolving conflicts over the ground-water resources of the study area are reviewed and alternative management options explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号