首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of ozonation and of photocatalysis processing in the treatment of pulp mill ECF (elementary chlorine free) bleaching and textile effluents was evaluated by determining total organic carbon reduction (TOC) and the toxicity. The chronic toxicity of the effluents was evaluated by the ability to inhibit the growth of algae Selenastrum capricornutum. Cultured hamster V79 fibroblasts were used to assess the cytotoxicity of effluents submitted to different detoxification processes. Two endpoints were measured in V79 cells: 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) reduction and neutral red uptake (NRU). Both treatment processes were able to reduce the TOC, although ozonization was less effective for pulp mill ECF bleaching. The pulp mill ECF bleaching and textile effluents reduced the growth of S. capricornutum by 39% and 27%, respectively. However, at the highest concentration tested, the textile effluents treated by photochemical process for 60 min showed increased cytotoxicity in V79 cells compared to the untreated effluent when assessed by the NRU and MTT reduction assays (increases of 30% and 40%, respectively). Pulp mill ECF bleaching effluent treated by ozonization had a similar cytotoxicity to that of untreated effluent in the NRU assay. In contrast, the MTT reduction assay indicated that effluents treated with ozone were around 20% more cytotoxic than untreated effluents. These results show that cultured fibroblasts may be useful for studying cellular responses to pollutants and may be included in tests to monitor the efficiency of effluent detoxification processes.  相似文献   

2.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   

3.
The treatment efficiency, as toxicity removal, of complex effluents from the Industrial District of Cama?ari (BA, Brazil), after biological treatment with activated sludge was evaluated using Microtox. Samples of the equalised effluent (EE) were collected prior to treatment together with samples of the treated effluent (TE), which remained 24 h in the treatment plant. Rehydrated colonies of Vibrio fischeri were exposed to sequential dilutions of EE and TE to assess luminosity interference. Values for EC50 were calculated, together with the respective toxicity units. In all, twenty assays of each effluent type were carried out and the mean toxicity removal was 92.71%, while the chemical oxygen demand (COD) presented mean reduction of 83.04%. There was a variability of an order of magnitude between the Microtox results for the two types of effluents. The mean EC50 values were 2.12 for EE and 47.78% for TE. In spite of its weakness in some conditions, the Microtox system demonstrated to work adequately in assessing effluent toxicity removal in this treatment plant and therefore can be used for further toxicity removal programs.  相似文献   

4.
In response to recent changes in National Pollutant Discharge Elimination System (NPDES) permit regulations, rapid (7-day) static renewal toxicity tests have been developed to detect chronic (sublethal and lethal) effect concentrations of municipal and industrial effluents on freshwater and marine/estuarine organisms. This paper evaluates results from short-term (7-day) chronic effluent tests measuring effects on the growth and survival of the larvae of estuarine sheepshead minnow (Cyprinodon variegatus). Growth was the more sensitive endpoint in 52% of the effluent tests; survival was most sensitive in 7% of the tests. Growth and survival were equally sensitive endpoints in 26% of the tests, while there was no effect on either endpoint at the highest test concentration in 15% of the tests. Four short-term chronic tests were conducted concurrently with early life stage (ELS) tests using a common effluent. Effect concentrations were generally (two of three) within one dilution (a factor of three). Comparison of short-term chronic and ELS tests were also conducted with reference single chemicals and the results were slightly better than the effluent comparisons. A series of ten intralaboratory tests and seven interlaboratory tests were conducted to assess the variability among tests results. Toxicity in these tests varied by no more than one test concentration interval. We concluded that this sheepshead minnow test is suitable to estimate chronic values for complex effluents discharged to marine/estuarine environments within the NPDES permit regulations.  相似文献   

5.
A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox((R))). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox((R)) assays, and the fact that whole sediments were more toxic than was interstitial water.  相似文献   

6.
Toxicity of effluents from two sewage treatment plants in Joplin, Missouri, was tested using Ceriodaphnia dubia and Pimephales promelas. No test organisms survived in effluents from either plant, in effluents diluted with water from Turkey Creek (the receiving stream), or in water from Turkey Creek. Mortality was complete in all but the most dilute treatments of effluents, in which reconstituted water was used as the diluent. High concentrations of pentachlorophenol (130-970 microg liter(-1)) in effluents and the receiving stream likely caused mortality during the 7-day tests. Detectable concentrations of other phenolic compounds indicated the presence in Turkey Creek of other toxic by-products of pentachlorophenol manufacture. This study demonstrated the utility of biological tests of whole effluents to determine toxicity of wastewater effluents.  相似文献   

7.
Two bacterial tests employing Photobacterieum phosphoreum (Microtox bioluminescence test) and Salmonella typhimurium TA 1535 pSK1002 (umu-assay) were evaluated to estimate the cytotoxic and genotoxic potential of water samples from the selected rivers in Germany as well as the primary and secondary effluents of some sewage treatment plants. Rainbow trout (Onchorynchus mykiss) were exposed to different concentrations (20-40%) of secondary effluent in the model online aquatic monitoring plant WaBoLu-Aquatox. The toxic potential of water samples from the exposure tanks was determined in two prokaryotic test systems and the biomarkers acethylcholinesterase (AChE) activity in muscle tissue and DNA unwinding assay in liver tissue of fish. Samples from the tested rivers showed no inhibition of the bioluminescence of P. phosphoreum or growth of umu-bacteria. Only primary effluent samples from the treatment plants at the Saale River inhibited the light emission or the growth of test bacteria by more than 20%. The induction ratio of umu-bacteria was in most of the river samples less than the threshold for genotoxicity (IR < 1.5). Only some samples from the Saale River, especially at sites downstream of secondary effluents caused genotoxic responses in the umu-assay. Samples of primary effluents contained the greatest genotoxic potential up to GEUI = 6 which was not detectable in samples of secondary effluents. A concentration range 20-40% secondary effluent inhibited AChE activity in muscle tissue and significantly increased DNA fragmentation in liver tissue of rainbow trout. In contrast, no cytotoxic or genotoxic responses in the umu-assay were caused by water samples. Both bacterial methods can be successfully used to analyse the cytotoxic and genotoxic response of industrial and domestic wastewater and to estimate the effectiveness of sewage treatment units. However, because of their low sensitivity and high susceptibility, they are not reliable as a single test for the detection of cytotoxicity and genotoxicity in surface water. The application of prokaryotic tests systems with biomarkers such as AChE activity and DNA fragmentation in different tissues of test organisms seems to be a useful combination for the assessment of cytotoxic and genotoxic potential in surface water and secondary effluent.  相似文献   

8.
The toxicity of mononitrophenols and dinitrophenols (DNP) to luminescent bacteria Vibrio fischeri (Microtox test) and ciliated protozoan Spirostomum ambiguum (Spirotox test) was evaluated. Spirotox was more sensitive to the tested nitrophenols (NPs) than the Microtox test. 2,5-DNP was the most toxic and 2-NP was the least toxic to the both bioindicators. The toxicity depended greatly on the pH of the medium. The highest changes were observed for DNPs, where the toxicity decreased more than 20-times when the pH increased from 6 to 8. No significant decrease of the toxicity was found for NPs, when the pH increased from 6 to 7. Greater increase of the pH to 8 caused from 1.5 to 4-fold decrease of the toxicity.  相似文献   

9.
This study compared results of no aeration, intermittent aeration, and constant aeration strategies in determining the static acute (48-h) toxicity of phenolic-based effluents to adult fathead minnows (Pimephales promelas). Toxicity was greatest in no aeration tests followed by intermittent aeration and constant aeration. Two factors were considered responsible for the observed patterns of toxicity. First, in side-by-side tests of no versus intermittent aeration and intermittent versus constant aeration, toxicity reductions were directly attributed to maintenance of dissolved oxygen above 5.0 mg litre(-1) in aerated containers. Secondly, toxicity was reduced when treatment system temperatures were warmest, probably due to increased microbial activity and volatilisation during late spring to early autumn (temperatures > 16 degrees C). Effluent was slightly more toxic on- than off-site, presumably due to degradation of phenolic compounds during transport and set-up at the off-site laboratory (approximately 4.5 h). Gill tissue ultrastructure and histopathology were used to determine the extent of effluent-induced damage and the recovery of minnows to short (6-h) effluent exposures. After a 48-h exposure to the approximate LC(50) level, gill tissue lamellae were characteristically desquamated with epithelium lifting from the basement membrane. Gill tissue was similarly damaged after a 6-h exposure to 100% effluent and had recovered to pre-exposure conditions after 42 h in clean water. Aeration strategies in these studies demonstrated potential air-stripping of volatile compounds, although stress to test organisms from low dissolved oxygen was relieved.  相似文献   

10.
Samples of effluents, sludge, pulp, final products (paper) and soil were collected from the identified pulp and paper mills in India. The samples were analysed for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and other dioxin congeners and precursors. Pulp and paper mills using chlorine for the bleaching process showed the presence of 2,3,7,8-TCDD in effluent samples. In the effluent and pulp samples from mills where chlorine dioxide was used as a bleaching agent, the 2,3,7,8-TCDD congener ranged from below the detection limit 0.05 to 0.12 ngL−1/ngg−1. The relative standard deviation of reproducibility and the percent recovery of 2,3,7,8-TCDD were 2.07 and 82.4% in pulp and 2.8 and 92% in effluent, respectively. The 1,3,6,8-TCDD was the only other major dioxin congener found in the treated and untreated effluent and sludge samples. However, dichlorobenzene, trichlorophenyl, and hexachlorobiphenyl were detected in all samples. The formation of dioxins can be minimised by replacing chlorine with chlorine dioxide in bleaching processes in pulp and paper mills.  相似文献   

11.
To better understand the relationships between pulp manufacturing processes and mixed function oxidase (MFO) enzyme induction in fish, a practical and standardized exposure procedure is required. This study was undertaken to develop a laboratory-based exposure procedure to quantify the relative MFO induction potencies of different types of pulp and paper mill effluents. One major consideration in developing the procedure was to ensure that the protocol was practical so that tests could be performed in a short time, with small volumes of effluents and using simple experimental conditions. A series of concentration-response and time-course experiments were conducted to find the minimum time and effluent concentration which could distinguish the ability of different effluents to cause significant MFO induction in rainbow trout in the laboratory. Experiments were also conducted to determine the effects of biotic and abiotic factors such as loading density, fish size and feeding regime. This study showed that the exposure of rainbow trout in the laboratory to 10% concentration of secondary-treated effluent for 96 h caused significant increases in hepatic MFO activity. The magnitude of MFO induction was comparable to other field and laboratory observations. While fish size, loading density and feeding regime were found to affect the test results, consistent responses within a laboratory using this protocol are possible, provided that these factors are standardized. Therefore, the short-term exposure approach described in this paper could be a relevant tool for assessing the ability of different types of pulp and paper mill effluents to cause MFO induction in fish.  相似文献   

12.
Removal of chromium (Cr) from tannery effluents by recovery of metal also reduces the ecotoxicological impact. To develop such a process, columns packed with calcium alginate (CA) beads with or without humic acid (HA) have been used as an adsorbent and tannery effluent was passed through it. Concentration of Cr in beads and in different fractions collected after adsorption was measured. Change in total organic carbon content during the process was also noticed. The fractions were also tested for toxicity towards Microtox assay. EC(50) values were determined with the help of Microtox analyser 500. Data showed that the CA beads along with HA could be effectively utilised in removal of 54% Cr and also in reducing the toxicity (EC(50) (%) in 5 min=>100 in fractions collected after 72 h).  相似文献   

13.
Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.  相似文献   

14.
This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone.  相似文献   

15.
Guerra R 《Chemosphere》2001,44(8):1737-1747
The aim of this paper was to evaluate the ecotoxicological response of industrial effluents containing phenolic compounds. All complex effluents collected from a chemical plant and then after both a chemical–physical and biological treatment were characterised with chemical analysis, biodegradability tests and four ecotoxicological tests (Daphnia magna, Artemia salina, Brachionus plicatilis and Vibrio fisheri with Microtox®). The evaluation of the chemical and ecotoxicological data was useful for predicting the effect of the raw effluent on the treatment plant and the impact of the final treated effluent on the receiving water. Besides the toxicity of the effluent from the chemical plants, the acute toxicity of its main components was also determined. The results of the tests and toxicity data from literature were transformed in Toxic Units (TUs). Effluent toxicity was under- or over-estimated by calculating the sum of the TUs of the individual components, depending on which toxicity data and test organisms were used.  相似文献   

16.
Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research.In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d.None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration.Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment.  相似文献   

17.
Elevated concentrations of arsenic, nickel, and molybdenum in aquatic systems around northern Saskatchewan uranium mines are an environmental concern. Early life stage fathead minnows were used to assess toxicity from several aquatic systems near the Key Lake and Rabbit Lake uranium operations. Hatching success of fish embryos exposed to waters receiving contaminants associated with uranium ore milling was reduced by 32-61% relative to controls. Mortality differed in two lakes receiving mill effluents because of opposing factors influencing metal toxicity (i.e. low pH and high hardness). In one mill receiving water (Fox Lake), larval mortality was 0%, whereas mortality was 85% in water collected from a downstream location (Unknown Lake). Fish embryos exposed to open-pit dewatering effluent receiving waters, or water from a flooded open pit (i.e. pit waters), hatched 26-39% earlier than those exposed to reference or control water. The combination of low water hardness and elevated nickel concentrations in pit waters contributed to the early hatching. Egg hatchability and hatching time were more sensitive indicators of toxicity than 'standard' endpoints, like larval mortality and growth. Current regulatory emphasis on single contaminants and standard toxicological endpoints should be re-evaluated in light of the complex interaction among confounding variables such as pH, hardness. conductivity, and multi-metal mixtures.  相似文献   

18.
A Kunz  V Reginatto  N Durán 《Chemosphere》2001,44(2):281-287
Textile effluents cause a high environmental impact when released into the environment without correct treatment. In this work, we have evaluated the capacity of treatment of a textile effluent using a biological and a chemical method using the sequence Phanerochaete chrysosporium-ozone. The fungal treatment was performed by direct incubation of a fungus spore suspension in textile effluent for nine days. Then, the effluent was ozonized at pH 11 and room temperature. Color, total organic carbon, molecular mass distribution and total phenols were determined. In biological experiments, enzymatic activity (lignin peroxidase, manganese peroxidase and laccase) were also monitored. Toxicity tests were carried out with Scenedesmus subspicatus and with Escherichia coli. Good decoloration, total phenols reduction and textile effluent molecular mass reduction were obtained during the process. No significant total organic carbon reduction was observed. The toxicity of the textile effluent was reduced with both test organisms showing no inhibition at the end of the treatment.  相似文献   

19.
The chemical composition of lipophilic extractives from process waters throughout a totally chlorine free (TCF) bleaching sequence after kraft pulping of eucalypt wood has been studied. These compounds are among the most problematic wood constituents for both TCF and zero liquid effluent (ZLE) processes, since they tend to accumulate in circuits resulting in the formation of the so-called pitch deposits causing serious problems in the pulp and paper industry. Pitch deposits collected at different parts of the pulp mill were also characterized and their composition compared with that of lipophilic compounds in process waters and Eucalyptus globulus wood. The identification of these compounds from process waters, wood and pitch deposits was performed by gas chromatography and gas chromatography-mass spectrometry using short- and medium-length high temperature capillary columns. Sterols, sterol esters, steroid ketones and steroid hydrocarbons were the main compounds identified. These chemical species arise from eucalypt wood extractives that survive the pulping and are released from pulp into the process waters during the bleaching process. Finally, they can deposit in pulp and on different parts of the mill or remain suspended in process waters being discharged in effluents.  相似文献   

20.
分别利用小麦、发光菌毒性测试技术研究了模拟丙烯腈废水以及几种处理工艺出水对小麦芽伸长、根伸长、发芽率和发光菌发光度的毒性效应差异。结果表明,丙烯腈对小麦芽伸长的毒性影响最大;各类物质对小麦根伸长和发芽率并未造成毒性影响;其他物质对发光菌发光度的毒性最大。模拟废水对小麦芽伸长、根伸长、发芽率和发光菌发光度的毒性效应分别为:部分相加、部分相加、协同和拮抗作用。几种处理工艺出水对上述指标的毒性影响顺序依次是:模拟废水加成出水活性炭吸附出水Fenton法出水;Fenton法出水模拟废水加成出水活性炭吸附出水;Fenton法出水活性炭吸附出水模拟废水加成出水;活性炭吸附出水加成出水Fenton法出水模拟废水。比较几种处理工艺出水的毒性发现,几乎每种废水的毒性都有所降低,这说明几种处理工艺能有效降低模拟废水的毒性,具有深刻的实际指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号