首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

2.
Few numerical simulations have attempted to include a high degree of biological detail for several trophic levels. Typically, in planktonic ecosystem models, if the dynamics of nutrients, phytoplankton and herbivorous zooplankton are formulated with ecological complexity, then carnivores are ignored, forced or modeled in an extremely simplified manner. Extensive mechanistic detail for important carnivores is difficult to represent because reliable and relevant ecological data are rarely available for appropriate species and local populations. Further, the wide temporal and spatial differences between life histories of lower plankton and carnivores may be technically difficult to model.In Narragansett Bay, Rhode Island, the ctenophore Mnemiopsis leidyi is an important carnivore to which these objections do not apply. A detailed carbon-based simulation model of this population of ctenophores was developed independently from an ecosystem model of Narragansett Bay which included detailed interactions between phytoplankton, primarily herbivorous zooplankton and nutrients. The interfacing of these two models without changing any of the formulations or values of the coefficients provided a test of the commonly used practice of forcing certain components. Both models were originally constructed with the biomass of a critical compartment forced according to observed data; in the plankton model, ctenophores were forced, and in the ctenophore model, zooplankton were forced.Predicted biomasses for zooplankton and ctenophores in the combined model were similar to the results of the two parent models, but improved relative to the actual field observations. From the findings it appears that the strategy of forcing is valid provided the forced patterns are appropriate and reasonable.  相似文献   

3.
A new integrated model that includes a hydrodynamic model coupled with a contaminant fate and effect sub-model and an ecological sub-model is presented and validated using data from mesocosm experiments. The experiments were carried out in the Isefjord (Denmark) and include the combined effects of nutrients and pyrene addition on the lower trophic levels of bacteria, zooplankton and phytoplankton. The model was able to correctly represent the main dynamics observed in the mesocosms during the 11 days of the experiment and thereby confirmed that it is possible to represent short-term changes in the system with a simplified food-web model on a small spatial and temporal scale. Finally, the validated model was used to carry out a scenario analysis to investigate the effects of a contaminant pulse at different pyrene concentrations and different release timings. Results showed that the ecosystem's vulnerability to a pyrene pulse depends on the initial condition of the system. Stronger biomass reduction was observed when the pulse was released during the zooplankton bloom. Conversely, when the pulse was added at low biomass and before the bloom, the system showed a tendency to behave non-linearly.  相似文献   

4.
Simple plankton models serve as useful platforms for testing our understanding of the mechanisms underlying ecosystem dynamics. A simple, one-dimensional plankton model was developed to describe the dynamics of nitrate, ammonium, two phytoplankton size-classes, meso-zooplankton, and detritus in the Oregon upwelling ecosystem. Computational simplicity was maintained by linking the biological model to a one-dimensional, cross-shelf physical model driven by the daily coastal upwelling index. The model sacrificed resolution of regional-scale and along-shore (north to south) processes and assumed that seasonal productivity is primarily driven by local cross-shelf Ekman transport of surface waters and upwelling of nutrient-rich water from depth.Our goals were to see how well a simple plankton model could capture the general temporal and spatial dynamics of the system, test system sensitivity to alternate parameter set values, and observe system response to the effective scale of potential retention mechanisms. Model performance across the central Oregon shelf was evaluated against two years (2000-2001) of chlorophyll and copepod time-series observations. While the modeled meso-zooplankton biomass was close in scale to the observed copepod biomass, phytoplankton was overestimated relative to that inferred from the observed surface chlorophyll concentration. Inshore, the system was most sensitive to the nutrient uptake kinetics of diatom-size phytoplankton and to the functional grazing response of meso-zooplankton. Meso-zooplankton was more sensitive to alternate parameter values than was phytoplankton. Reduction of meso-zooplankton cross-shelf advection rates (crudely representing behavioral retention mechanisms) reduced the scale of model error relative to the observed seasonal mean inshore copepod biomass but had little effect of the modeled meso-zooplankton biomass offshore nor upon phytoplankton biomass across the entire shelf.  相似文献   

5.
‘End-to-end’ models have been adopted in an attempt to capture more of the processes that influence the ecology of marine ecosystems and to make system wide predictions of the effects of fishing and climate change. Here, we develop an end-to-end model by coupling existing models that describe the dynamics of low (ROMS–N2P2Z2D2) and high trophic levels (OSMOSE). ROMS–N2P2Z2D2 is a biogeochemical model representing phytoplankton and zooplankton seasonal dynamics forced by hydrodynamics in the Benguela upwelling ecosystem. OSMOSE is an individual-based model representing the dynamics of several species of fish, linked through opportunistic and size-based trophic interactions. The models are coupled through a two-way size-based predation process. Plankton provides prey for fish, and the effects of predation by fish on the plankton are described by a plankton mortality term that is variable in space and time. Using the end-to-end model, we compare the effects of two-way coupling versus one-way forcing of the fish model with the plankton biomass field. The fish-induced mortality on plankton is temporally variable, in part explained by seasonal changes in fish biomass. Inclusion of two-way feedback affects the seasonal dynamics of plankton groups and usually reduces the amplitude of variation in abundance (top-down effect). Forcing and coupling lead to different predicted food web structures owing to changes in the dominant food chain which is supported by plankton (bottom-up effect). Our comparisons of one-way forcing and two-way coupling show how feedbacks may affect abundance, food web structure and food web function and emphasise the need to critically examine the consequences of different model architectures when seeking to predict the effects of fishing and climate change.  相似文献   

6.
The impact of the freshwater bivalve Corbicula leana on plankton community dynamics was examined during a cyanobacterial bloom period. Nutrient and chlorophyll concentrations, primary productivity, and phytoplankton and zooplankton communities in the experimental enclosures were measured at 2-3 day intervals. The introduction of mussels reduced net primary productivity and phytoplankton and chlorophyll. Chlorophyll decreased immediately following addition of 100 mussels and then increased over time. After 600 mussels were added, chlorophyll decreased continuously from 87to 25 microg l(-1), approaching that in the mussel-free enclosure. Simultaneously, water transparency increased and concentrations of suspended solids and total phosphorus decreased. Mussel addition caused short-term increases in nutrient concentrations, especially following high-density treatment: phytoplankton density decreased, while cell density in the mussel-free enclosure increased. Zooplankton densities in the two enclosures were similar; however, carbon biomass in the mussel enclosure increased, associated with an increase in large zooplankton. The trophic relationship between phytoplankton and zooplankton was positive in the mussel-free enclosure and negative in the mussel-treatment enclosure, possibly reflecting effects of mussels on both consumer and resource control in the plankton community. Thus, filter feeding by Corbicula affects nutrient recycling and plankton community structure in a freshwater ecosystem through direct feeding and competition for food resources.  相似文献   

7.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

8.
Small-scale gradients of phytoplankton productivity in the littoral fringe   总被引:1,自引:0,他引:1  
Inshore-offshore transects and time-series sampling programs were carried out on the South shore of the St. Lawrence Estuary on several occasions during the summer season of 1978, 1979 and 1986. In 1981, a time-series sampling program was also conducted on three occasions during the summer. The sampling program was carried out to test the hypothesis that higher phytoplankton biomass and productivity occurs in the littoral zone than in the offshore zone. Our results showed consistently higher nutrient concentrations and lower seasonal variability in the littoral zone than offshore. However, biomass indicators (chlorophyll concentrations and phytoplankton cell counts) showed lower values nearshore than offshore, in contrast to primary production and photosynthetic capacity which were higher nearshore than offshore. These differences are interpreted with reference to the grazing activity of benthic filter-feeders, which probably helped to reduce the phytoplankton biomass in the littoral zone, while at the same time, they contributed to the rapid recycling of nutrients, thereby allowing much higher phytoplankton productivity nearshore than offshore. These results are in keeping with the ecological concept suggesting that exploitation can have a rejuvenating effect on an ecosystem which often is translated into enhanced productivity.  相似文献   

9.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

10.
• Hg bioaccumulation by phytoplankton varies among aquatic ecosystems. • Active Hg uptake may exist for the phytoplankton in aquatic ecosystems. • Impacts of nutrient imbalance on food chain Hg transfer should be addressed. The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer from water to aquatic food chain. However, the current understanding of major factors affecting Hg accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide, including inland water, nearshore water and open sea, was established. Key factors influencing plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell size for both phyto- and zooplankton. A contrasting trend was observed between the plankton biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid shifts in nutrient compositions. We suggested that these potential influences on the growth and composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk assessments.  相似文献   

11.
J. Kuiper 《Marine Biology》1977,44(2):97-107
In two experiments lasting 4 to 6 weeks, communities of North Sea coastal plankton kept in separate plastic bags (of about 1400 l) and exposed to the same environmental conditions showed very similar patterns of growth and decline. This result means that the method is suitable for the evaluation of toxic effects of environmental pollutants at low concentrations on complex plankton systems. The phytoplankton in the bags produced a succession of blooms, which were probably limited by shortage of nutrients. The dominant zooplankton organisms were various species of copepods which can develop in the bags from egg to adult. Strong indications were found that mineralization of organic matter occurs in the bags. Chemical parameters and phytoplankton biomass were found not to be stratified, indicating that the contents of the bags were well mixed.Work carried out under Contract No. 110-75-1 ENVN of the E.C. Environmental Research Programme.  相似文献   

12.
渭河浮游生物群落结构特征及其与环境因子的关系   总被引:1,自引:0,他引:1  
渭河是黄河第一大支流,是黄河流域生态保护与高质量发展的重要研究区域.为了掌握渭河浮游生物组成结构及生态环境现状,于2018—2019年分两个季节在渭河开展4次水生态调查,研究分析了渭河浮游生物群落结构特征及其影响因子.调查结果显示,浮游植物有8门53种,以绿藻门和硅藻门为主,占比分别为43.4%、33.9%;浮游动物4...  相似文献   

13.
Climate variability is increasingly recognized as an important regulatory factor, capable of influencing the structural properties of aquatic ecosystems. Lakes appear to be particularly sensitive to the ecological impacts of climate variability, and several long time series have shown a close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food web dynamics. Thus, understanding the complex interplay among meteorological forcing, hydrological variability, and ecosystem functioning is essential for improving the credibility of model-based water resources/fisheries management. Our objective herein is to examine the relative importance of the ecological mechanisms underlying plankton seasonal variability in Lake Washington, Washington State (USA), over a 35-year period (1964–1998). Our analysis is founded upon an intermediate complexity plankton model that is used to reproduce the limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (particulate phosphorus) dynamics in the lake. Model parameterization is based on a Bayesian calibration scheme that offers insights into the degree of information the data contain about model inputs and allows obtaining predictions along with uncertainty bounds for modeled output variables. The model accurately reproduces the key seasonal planktonic patterns in Lake Washington and provides realistic estimates of predictive uncertainty for water quality variables of environmental management interest. A principal component analysis of the annual estimates of the underlying ecological processes highlighted the significant role of the phosphorus recycling stemming from the zooplankton excretion on the planktonic food web variability. We also identified a moderately significant signature of the local climatic conditions (air temperature) on phytoplankton growth (r = 0.41), herbivorous grazing (r = 0.38), and detritus mineralization (r = 0.39). Our study seeks linkages with the conceptual food web model proposed by Hampton et al. [Hampton, S.E., Scheuerell, M.D., Schindler, D.E., 2006b. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051.] to emphasize the “bottom-up” control of the Lake Washington plankton phenology. The posterior predictive distributions of the plankton model are also used to assess the exceedance frequency and confidence of compliance with total phosphorus (15 μg L−1) and chlorophyll a (4 μg L−1) threshold levels during the summer-stratified period in Lake Washington. Finally, we conclude by underscoring the importance of explicitly acknowledging the uncertainty in ecological forecasts to the management of freshwater ecosystems under a changing global environment.  相似文献   

14.
Barnett A  Beisner BE 《Ecology》2007,88(7):1675-1686
While empirical studies linking biodiversity to local environmental gradients have emphasized the importance of lake trophic status (related to primary productivity), theoretical studies have implicated resource spatial heterogeneity and resource relative ratios as mechanisms behind these biodiversity patterns. To test the feasibility of these mechanisms in natural aquatic systems, the biodiversity of crustacean zooplankton communities along gradients of total phosphorus (TP) as well as the vertical heterogeneity and relative abundance of their phytoplankton resources were assessed in 18 lakes in Quebec, Canada. Zooplankton community richness was regressed against TP, the spatial distribution of phytoplankton spectral groups, and the relative biomass of spectral groups. Since species richness does not adequately capture ecological function and life history of different taxa, features which are important for mechanistic theories, relationships between zooplankton functional diversity (FD) and resource conditions were examined. Zooplankton species richness showed the previously established tendency to a unimodal relationship with TP, but functional diversity declined linearly over the same gradient. Changes in zooplankton functional diversity could be attributed to changes in both the spatial distribution and type of phytoplankton resource. In the studied lakes, spatial heterogeneity of phytoplankton groups declined with TP, even while biomass of all groups increased. Zooplankton functional diversity was positively related to increased heterogeneity in cyanobacteria spatial distribution. However, a smaller amount of variation in functional diversity was also positively related to the ratio of biomass in diatoms/chrysophytes to cyanobacteria. In all observed relationships, a greater variation of functional diversity than species richness measures was explained by measured factors, suggesting that functional measures of zooplankton communities will benefit ecological research attempting to identify mechanisms behind environmental gradients affecting diversity.  相似文献   

15.
《Ecological modelling》2005,181(2-3):247-262
Spatial heterogeneity of ecological systems has been recognised in recent years as an important ecological feature of an ecosystem, rather than a mere statistical nuisance. However, although considerable interest has been paid to the development of statistical methods for the analysis of spatial environmental data, when in presence of more species or environmental variables common analyses still fail to recognise the necessity of a joint modelling of the whole correlation structure. In this paper, we propose to study the multivariate spatial autocorrelation of a plankton community by making explicit reference to a spatial linear factor model entailing a set of constraints for the spatial structure of the planktonic species. The data set examined come from an intensive 2-day sampling survey performed in July 1991 on Lake Trasimeno (Italy) to investigate the horizontal spatial heterogeneity and distribution of the planktonic community, from small (50 m) to large (1000–10,000 m) scale. The analysis revealed that zooplankton and phytoplankton essentially have different degrees of heterogeneity and different spatial structures which required separate modelling. On the other hand, the similarity of the spatial autocorrelation found within zooplankton and phytoplankton communities, indicates that at the investigated scales of observation the horizontal organisation of both components is not appreciably affected by species-specific behaviours. The analysis of the multivariate spatial patterns emerging from the mapping of the extracted factors suggested an interpretation of the distribution of macrozooplankton and phytoplankton assemblages in terms of planktonic responses to environmental factors of a lake-size scale.  相似文献   

16.
A vertical-compressed three-dimensional ecological model in Lake Taihu, China   总被引:20,自引:0,他引:20  
A three-dimensional ecological model on the basis of the analyses of environmental characteristics is set up for Lake Taihu, one of the largest shallow lakes in China. The hydrodynamic processes, nutrient cycling, chemical processes and biological processes are integrated in the model. Model state variables include: water current, surface displacement, nutrients of nitrogen and phosphorus, as well as their different forms such as ammonia nitrogen, nitrate nitrogen, phosphate phosphorus, etc., biomasses of macroplankton, phytoplankton, zooplankton and fish, and also the nutrient levels of macroplankton and phytoplankton. A nutrient budget and sediment transformation are also coupled in the model. The data from January 17, 1997 to January 18, 1998 are use to calibrate the model. The model results have shown good agreement with the observations. It implies that the model could be used for the lake environmental management and research for examining the processes and determining the water quality. The reasons of deviations between the modelled results and the observed values are also discussed. There are six factors that explain the deviations of the modelled results from the observed values and they can be grouped into two sets. One set of problems is associated with the standard deviation introduced by sampling and analyses. The second set of problems can be solved by introduction of processes lacking in the present model (resuspension, phytoplankton transportation mode under the wind with low speed, shifts in species composition and varied size of phytoplankton and zooplankton). The latter two processes should be included in the model at a later stage by integration of a structurally dynamic approach into the three-dimensional model.  相似文献   

17.
The main objective of this paper is to implement a coupled three-dimensional physical and ecological model for the Aveiro coast, and to apply it to study the temperature and the phytoplankton biomass spatial distributions along the coastal ecosystem. The Aveiro coast is located at Portugal within the upwelling system of the Atlantic Iberian coast, characterized by nutrients availability and phytoplankton biomass accumulation, from April to October. In order to implement the ecological model, its validation was assessed by comparing simulations to data relative to the horizontal and vertical distributions of the temperature, nutrients and phytoplankton biomass, obtained during the CICLOS I survey off the Portuguese coast [Moita, M.T., 2001. Estrutura, Variabilidade e Dinâmica do Fitoplâncton na Costa de Portugal Continental. PhD Thesis. Faculdade de Ciências da Universidade de Lisboa, 272 pp.]. A sensitivity analysis of the model has been performed in order to assess the influence of the main ecological model variables. The simulation results show that the model is capable of predicting realistic the temperature, the nutrients and the chlorophyll-a distributions for the study area. The scenarios evidence the setup of a thermal stratification pattern resulting from the upwelling of deep and rich in nutrients water to the surface layer and a chlorophyll-a maxima extending offshore, along the picnocline and the nutricline. The results confirm the crucial role played by the physical processes in the phytoplankton bloom along the Aveiro coast. They also evidence the close link between the surface phytoplankton distribution and the surface temperature distribution.  相似文献   

18.
19.
The heterotrophic phase of plankton succession in the Japan Sea   总被引:7,自引:0,他引:7  
The vertical structure, composition and productivity of a plankton community was studied in the Japan Sea in June, 1972 during a period of thermocline formation; the parameters measured were: phytoplankton production and biomass; number, biomass, and production of planktonic bacteria; biomass of phagotrophic flagellates, ciliates and remaining microzooplankton. The concentration of micro- and mesozooplankton attained a basic maximum in a layer near the upper part of the thermocline. The biomass and calculated production of the heterotrophic part of the community exceeded considerably the amount of primary production. The heterotrophic phase of the seasonal succession of a plankton community in a temperate sea is described, when heterotrophic metabolism and production predominate. Heterotrophs at this stage use mostly energy from organic matter accumulated during the previous spring phytoplankton bloom.  相似文献   

20.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号