首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacterial bloom events in South Taihu Lake cause serious water quality problems and disturb aesthetic view of lake’s environment. In this study, correlations between cyanobacterial blooms and hydro-meteorological factors, including water quality, temperature and precipitation were investigated. Results demonstrated that South Taihu Lake was heavily affected by cyanobacteria and the proliferation of cyanobacteria due to variations in hydro-meteorological factors and water quality conditions. Water quality parameters, including COD, NH3-N, TN and TP improved significantly since 2008 even at an elevated cyanobacterial bloom situation. Correlation analyses have shown that the development of cyanobacterial density and chlorophyll a concentration was sensitive to a wider temperature variation. The optimum temperature for cyanobacteria was 20°C, while extremely low and high temperatures were found to suppress their growth. Moreover, unusual rainfall patterns were measured during the study period (2003–2009), which showed an adverse impact on cyanobacterial development. Findings from this study suggested that seasonal lake’s water quality monitoring; suitable treatment of cyanobacterial blooms and strict policy implementation can solve the water quality issues in highly eutrophic lakes like Taihu.  相似文献   

2.
3.
Sentinel-2卫星兼具了空间分辨率高、重放周期短、谱段丰富三方面特点,为蓝藻水华爆发阶段及时准确的蓝藻水华提取提供了影像基础,但目前在大型湖泊蓝藻水华提取中的应用报道较少.为此,文章以2018—2020年巢湖的Sentinel-2遥感影像为例,开展包括浮游藻类指数(FAI)在内的多指标蓝藻水华提取方法研究,针对F...  相似文献   

4.
太湖蓝藻的时空变化规律及治理方法   总被引:3,自引:0,他引:3  
利用2009─2012年丰水期和平水期的生物调查获取的环境和生物数据,研究太湖蓝藻的时空分布规律,分析蓝藻分布与其他物理、化学和生物因子(如温度、酸碱性、有机物和营养盐含量、浮游植物与浮游动物密度等)的相关关系。结果表明:太湖水质基本上超出V类地表水指标,主要的超标因子是总氮。总氮在丰水期和平水期的质量浓度分别为3.05 mg·L-1和1.65 mg·L-1,总氮在丰水期质量浓度降低的主要原因可能是丰水期蓝藻迅速生长,吸收了大量的营养盐。蓝藻仍是太湖浮游植物的优势种。2009─2012年太湖蓝藻的密度随年份无明显变化,但随季节和区域存在显著差异:丰水期蓝藻密度均值为4.87×10^7cell·L-1,明显高于平水期蓝藻密度(1.51×10^6 cell·L-1);太湖东部采样点蓝藻密度明显低于其他湖区。影响蓝藻的非生物因素包括温度、酸碱度和营养盐,高温、偏碱性和高营养盐含量都会增加蓝藻的密度。蓝藻与其他浮游植物和大型水生植物之间存在竞争关系,蓝藻密度增加促进了枝角类的生长。推荐利用机械打捞和大型水生植物修复方法,因为这2种方法可在降低蓝藻密度的同时去除水体中的有机物和营养盐,可以从根本上降低太湖蓝藻水华的风险。增加其他藻类和枝角类控制蓝藻水华方法可行性较差:1)蓝藻暴发时期其它藻类对能量和营养的竞争能力弱于蓝藻,难以抑制蓝藻的生长;2)在太湖中增加枝角类可能降低现有蓝藻的密度,但建立完整的食物链体系降低富营养化程度,防范生物调控中可能存在的生态风险(如其他藻类水华等)较困难。  相似文献   

5.
The progressive degradation of surface freshwater quality due to the mass proliferation of toxic cyanobacterial blooms is of growing global concern. The occurrence of cyanobacterial blooms is not a new phenomenon. However, a global increase in the frequency, duration, and distribution of toxic cyanobacterial blooms could be observed in the past decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. The underlying causes and interrelations for this development have not been fully clarified. Nonetheless, all evidence points to the fact that mitigation of toxic cyanobacterial blooms will be a key challenge of the twenty-first century. This review addresses the underlying causes for the increased incidence of toxic cyanobacteria in temperate freshwater lakes and attempts to reveal possible reciprocities between bloom promoting factors. Selected approaches for the prevention of toxic cyanobacterial blooms as well as the mitigation of their potential negative impacts on humans will be presented.  相似文献   

6.
Inhomogeneous vertical distributions of the cyanobacterial biomass are widely observed during the summer season in stratified lake ecosystems. Among these are surface maxima characterized by surface scum formation and deep or subsurface maxima also known as deep chlorophyll maxima (DCM). The former occurs at the epilimnion in eutrophic lakes, and are usually caused by colonial cyanobacteria such as Microcystis. On the other hand, the latter occurs at the metalimnion and the upper part of the hypolimnion near the thermocline in oligotrophic lakes, and are referred to filamentous cyanobacteria such as Oscillatoria. The aim of this paper is to present a simple mathematical model that can simultaneously describe these phenomena including the annual and diurnal variations, emphasizing the roles of buoyancy regulation, transparency of the lake and zooplankton feeding on cyanobacteria. According to our computer analyses, the increased buoyancy, the low clarity of the lake and the low rate of zooplankton feeding take significant roles in formation of surface maxima, while the reversal of these factors makes deep maxima predominant. Our two-component model with nutrients and cyanobacteria can distinguish between two phenomena by changing the parameters for these factors, without altering the model itself.  相似文献   

7.
蓝藻水华强度的显著相关环境因素识别模型   总被引:1,自引:0,他引:1  
为识别蓝藻水华强度的显著相关环境因素,克服现有研究中因变量选择不合理、时间与空间精度较低等问题,构建了以蓝藻水华强度等级为因变量,以水质、水文和气象3类监测指标为自变量的多元线性回归模型,并将该模型应用于太湖蓝藻水华研究.基于水华面积和集聚强度数据,用7级量表生成水华强度等级值,使因变量具有宏观性,避免了仅使用叶绿素a浓度等类似指标表示水华强度所体现出的微观性不足.该数据集的时间精度达到每天采样2次,空间精度则达到太湖湖湾内的某个水域空间范围.因此因变量具有适度宏观性,而自变量的值则与因变量的值在较高的时间和空间精度基础上严格对应.模型的分析结果显示,太湖大贡山水域蓝藻水华强度与气温和硝酸盐浓度呈显著正相关,与风速、湿度和电导率呈显著负相关.上述结论与该研究领域的主流结论一致,验证了该模型的有效性.  相似文献   

8.
微囊藻毒素对微生物的生态毒理学效应研究进展   总被引:1,自引:1,他引:0  
微囊藻毒素是一类由蓝藻产生的具有肝毒性的环状肽类化合物,是富营养化淡水水体中最常见的藻类毒素,也是蓝藻水华污染过程中产量最大、危害最严重的藻毒素种类.论文根据微囊藻毒素对微生物(包括微型浮游植物、细菌、真菌)生态毒理学效应最新的研究进展,简要综述了微囊藻毒素的产生、理化性质以及对微生物的毒性效应,并对此研究领域进行了展望.  相似文献   

9.
There is an increasing need to describe cyanobacteria bloom dynamics using ecosystem models. We consider two fundamentally different ways how cyanobacteria are currently implemented: a simple approach without explicit consideration of the life cycle which assumes that cyanobacteria grow due to nitrogen fixation alone and an advanced approach that computes the succession of four different stages of the cyanobacteria life cycle based on internal quotas of energy and nitrogen. To qualitatively and quantitatively intercompare these different approaches and with observations, we use the Baltic Sea ecosystem model ERGOM coupled to the one-dimensional water column model GOTM. Four experiments are carried out: three, using the simple approach with either (a) a prescribed constant minimum production, (b) no minimum value or (c) a prescribed constant minimum concentration, and one with (d) the full predictive life cycle. The model data of 35 years (1970-2005) are analyzed for the timing of the bloom, the interannual variability, the annual mean nitrogen fixation rates and the effect of cyanobacteria on eukaryotic phytoplankton. The results show significant differences. In the climatological seasonal mean, only the advanced approach which resolves the life cycle produces a realistic bloom onset and duration. The interannual variability of blooms is unrealistically small in the experiments with a prescribed minimum value. Annual mean nitrogen fixation rates diverge by up to 30% between the four model solutions. Finally, the representation of the cyanobacteria also influences the seasonal cycle of eukaryotic phytoplankton, i.e., flagellates. This study demonstrates that the way how cyanobacteria are implemented in coupled biological-physical models strongly determines the fluxes into the system and between the individual compartments.  相似文献   

10.
In 2002, a “top-down” biomanipulation (reduction of biomass of planktivorous fish Carassius auratus) had been successfully carried out in a small reservoir of the river Bugach (Krasnoyarsk, Russia), after which the cyanobacterial blooming ceased. However, the reservoir ecosystem was absolutely free of Daphnia – the main link of trophic cascade. As supposed, the reduction of blooming was the result of suppression of a direct stimulation effect of planktivorous fish on cyanobacteria, revealed earlier in laboratory experiments. The question arose as to whether the effect of stimulation of cyanobacteria revealed in laboratory may lead to the changes in biomass of cyanobacteria in the reservoir, observed after the biomanipulation.To test this supposition, a mathematical model describing growth of cyanobacteria in the reservoir was developed. The modelling results and field data on biomass of cyanobacteria in summer closely coincided. Modelling calculations showed that direct influence of planktivorous fish could cause the second summer peak of water blooming by Microcystis. On the contrary, removal of crucian carp from the reservoir will not affect the level of water blooming caused by cyanobacteria Anabaena, as this species’ growth is not stimulated by fish.  相似文献   

11.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

12.
Previous studies on river health evaluation mainly focused on characterizations at a river-corridor scale and ignored the complex interactions between the river ecosystem and other components of the river basin. Based on the consideration of the interactions among rivers, associated river basin and habitats, an assessment framework with multi-scale indicators was developed. An index system divided among these three scales to characterize the health of river ecosystems in China’s Liao River Basin was established. Set pair analysis was applied to integrate the multi-scale indicators and determine the health classes. The evaluation results indicated that the rivers in the western and eastern zones of the Liao River were classified as sick, and rivers in the main stream of the Liao and Huntai rivers were classified as unhealthy. An excessive level of disturbances, such as large pollution loads and dense construction of water conservation projects within the river basin, were the main causes of the river health deterioration.  相似文献   

13.
Cyanobacteria are freshwater microorganisms that can bloom and produce toxins that contaminate water. There is thus a need for methods to remove cyanobacteria, by flocculation for instance. Here, we prepared new flocculants by modifying waterwork sewage sludge. Flocculant (A) or (B) were prepared by treating 3 g of preprocessed sludge in hydrochloric acid and heating at 200 or 250 °C for 3.0 h. Flocculant (A) and (B) were used to remove Microcystis aeruginosa colonies by adding 0.75 mL of flocculant to 100 mL of algal culture and incubating for 8 h. Results show removal efficiencies of 72 and 91%, respectively. Total nitrogen was reduced by 30 and 12%. Total phosphorus was reduced by 75 and 76%. Chlorophyll fluorescence showed that cyanobacterial cells were removed without damaging the membrane integrity. Overall, findings show that modified waterworks sludge flocculants have good potential for the control of algal blooms, the removal of total nitrogen and total phosphorus and the restoration of aquatic ecosystems.  相似文献   

14.
Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community was greatly driven by temperature as seen by DNA fingerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial cultures changed in a temperature-dependent manner, its quality greatly varied under the same environmental conditions, but with different associated bacterial communities. Furthermore, temperature affected quantity and quality of cell-bound microcystins, whereby interactions between M. aeruginosa and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic’ methanogens contributed to the associated microbial community. This implies so far uncharacterized interactions between Microcystis aeruginosa and its associated prokaryotic community, which has unknown ecological consequences in a climatically changing world.  相似文献   

15.
The spatiotemporal distributions of major phytoplankton taxa were quantified to estimate the relative contribution of different microalgal groups to biomass and bloom dynamics in the eutrophic Neuse River Estuary, North Carolina, USA. Biweekly water samples and ambient physical and chemical data were examined at sites along a salinity gradient from January 1994 through December 1996. Chemosystematic photopigments (chlorophylls and carotenoids) were identified and quantified using high-performance liquid chromatography (HPLC). A recently-developed factor-analysis procedure (CHEMTAX) was used to partition the algal group-specific chlorophyll a (chl a) concentrations based on photopigment concentrations. Results were spatially and temporally integrated to determine the ecosystem-level dynamics of phytoplankton community-constituents. Seasonal patterns of phytoplankton community-composition changes were observed over the 3 yr. Dinoflagellates reached maximum abundance in the late winter to early spring (January to March), followed by a spring diatom bloom (May to July). Cyanobacteria were more prevalent during summer months and made a large contribution to phytoplankton biomass, possibly in response to nutrient-enriched freshwater discharge. Cryptomonad blooms were not associated with a particular season, and varied from year to year. Chlorophyte abundance was low, but occasional blooms occurred during spring and summer. Over the 3 yr period, the total contribution of each algal group, in terms of chl a, was evenly balanced, with each contributing nearly 20% of the total chl a. Cryptomonad, chlorophyte, and cyanobacterial dynamics did not exhibit regular seasonal bloom patterns. High dissolved inorganic-nitrogen loading during the summer months promoted major blooms of cryptomonads, chlorophytes, and cyanobacteria. Received: 12 September 1997 / Accepted: 12 December 1997  相似文献   

16.
The nitrogenase activity in the cyanobacterial mat of a laminated microbial ecosystem was investigated by the acetylene reduction method. Measurements under several conditions such as light and dark, aerobic and anaerobic and by inhibiting photosystem II by 10-5 M DCMU showed the nitrogenase activity to be light stimulated and to some degree inhibited by oxygen. An appreciable amount of activity was also present under complete aerobic conditions. We estimated 8 to 15 kg N fixed per hectare per year for that part of the intertidal flat supporting growth of cyanobacteria. By measuring a vertical sediment profile, nitrogenase was shown to be associated with the cyanobacterial mat. Diurnal measurements of nitrogenase showed two activity peaks, one at sunrise and one at sunset. Following population dynamics in the cyanobacterial mat showed Microcoleus sp., Oscillatoria spp., Spirulina sp., Gloeocapsa sp. and sometimes Merismopedia sp. to be present. During four years of observations we never found any heterocystous cyanobacteria. Non-heterocystous cyanobacteria apparently play an important role in nitrogen fixation in this marine intertidal environment.  相似文献   

17.
We examined the influence of several hydrological and meteorological parameters on the migratory movements of ayu Plecoglossus altivelis altivelis in central Japan. When comprehensively evaluating rivers and ayu behaviour on a catchment scale, the subjects of analysis typically include human activities and hydrological and meteorological phenomena. However, limiting analyses to such factors may be too restrictive when human activities are being conducted. Accordingly, we incorporated a biological viewpoint into the evaluation method, analysing hydrological data (river discharge, river water temperature, sea water temperature) to determine watershed characteristics and examining the relationship between these characteristics and the habitat conditions of ayu. Then we constructed a numerical model for ayu migratory runs that incorporated ayu ecology and watershed characteristics. Analyses of ayu movements from a lower estuarine dam demonstrated that downstream displacements were associated with high water flows of more than 200 m3 s−1 at the beginning of summer. We conclude that it is important to consider the effects of environmental parameters on the movements of different fish species to understand the causes of spatial variation in fish distribution in lowland rivers.  相似文献   

18.
A dense dinoflagellate bloom of Gyrodinium aureolum Hulburt in a shallow temperate zone estuary was monitored during the summers of 1982 and 1983. The bloom was typically extremely localized, its densest part exceeding 1000g chlorophyll a liter-1 (2x104 cells ml-1). The bloom began at temperatures between 24.5° and 27°C, existed at as high as 30°C and terminated when water temperature dropped to between 19° and 22°C. The highest specific growth rate measured was 0.90d-1 (1.3 divisions d-1) and near the termination of the bloom decreased to 0.28d-1 (0.4 divisions d-1). A diel vertical migration of the bloom was observed. A box model analysis, based on division rates, vertical migration and water circulation patterns, indicated that the bloom must move downward at the estuary mouth to maintain itself in the estuary, either by means of a convergence system or by downward swimming. High growth rate, low grazing pressure, and a stratified water column are proposed to stimulate bloom formation. Decreasing growth rate appeared to reduce the intensity of the bloom and finally allowed its disappearance by estuarine flushing and mixing.Communicated by J. M. Shick, Orono  相似文献   

19.
The interactions of physical processes between estuaries and upstream river floodplains are of great importance to the fish habitats and ecosystems in coastal regions. Traditionally, a hydraulic analysis of floodplains has used one- or two-dimensional models. While this approach may be sufficient for planning the engineering design for flood protection, it is inadequate when floodwaters inundate the floodplain in a complex manner. Similarly, typical estuarine and coastal modeling studies do not consider the effect of upstream river floodplains because of the technical challenge of modeling wetting and drying processes in floodplains and higher bottom elevations in the upstream river domain. While various multi-scale model frameworks have been proposed for modeling the coastal oceans, estuaries, and rivers with a combination of different models, this paper presents a modeling approach for simulating the hydrodynamics in the estuary and river floodplains, which provides a smooth transition between the two regimes using an unstructured-grid, coastal ocean model. This approach was applied to the Skagit River estuary and its upstream river floodplain of Puget Sound along the northwest coast of North America. The model was calibrated with observed data for water levels and velocities under low-flow and high-flood conditions. This study successfully demonstrated that a three-dimensional estuarine and coastal ocean model with an unstructured-grid framework and wetting-drying capability can be extended much further upstream to simulate the inundation processes and the dynamic interactions between the estuarine and river floodplain regimes.  相似文献   

20.
During floods, the density of river water usually increases due to a subsequent increase in the concentration of the suspended sediment that the river carries, causing the river to plunge underneath the free surface of a receiving water basin and form a turbidity current that continues to flow along the bottom. The study and understanding of such complex phenomena is of great importance, as they constitute one of the major mechanisms for suspended sediment transport from rivers into oceans, lakes or reservoirs. Unlike most of the previous numerical investigations on turbidity currents, in this paper, a 3D numerical model that simulates the dynamics and flow structure of turbidity currents, through a multiphase flow approach is proposed, using the commercial CFD code FLUENT. A series of numerical simulations that reproduce particular published laboratory flows are presented. The detailed qualitative and quantitative comparison of numerical with laboratory results indicates that apart from the global flow structure, the proposed numerical approach efficiently predicts various important aspects of turbidity current flows, such as the effect of suspended sediment mixture composition in the temporal and spatial evolution of the simulated currents, the interaction of turbidity currents with loose sediment bottom layers and the formation of internal hydraulic jumps. Furthermore, various extreme cases among the numerical runs considered are further analyzed, in order to identify the importance of various controlling flow parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号