首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barnes and Roderick developed a generic, theoretical framework for vegetation modeling across scales. Inclusion of a self-thinning mechanism connects the individual to the larger-scale population and, being based on the conservation of mass, all mass flux processes are integral to the formulation. Significantly, disturbance (both regular and stochastic) and its impact at larger scales are included in the formulation. The purpose of this paper is to illustrate how this model can be used to predict patch and ecosystem dry mass, and consequently system carbon. Examples from pine plantations and mixed forests are considered, with these applications requiring estimates of system carrying capacity and the growth rates of individual plants. The results indicate that the model is relatively simple and straightforward to apply, and its predictions compare well with the data. A significant feature of this approach is that the impact of local scale data on the dynamics of larger patch and ecosystem scales can be determined explicitly, as we show by example. Further, the general formulation has an analytic solution based on characteristics of the individual, facilitating practical and predictive application.  相似文献   

2.
Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias < 6%), with estimates comparable to those obtained with regional allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.  相似文献   

3.
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social–ecological vulnerability offers a valuable framework for identifying and understanding important social–ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social–ecological vulnerability. We developed a method to map social–ecological vulnerability based on information on human–nature dependencies and ecosystem services at local scales. We applied our method to the small‐scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social–ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human–nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social–ecological vulnerability framework for policy, planning, and participatory management decisions.  相似文献   

4.
The structure of dominance relationships among individuals in a population is known to influence their fitness, access to resources, risk of predation, and even energy budgets. Recent advances in global positioning system radio telemetry provide data to evaluate the influence of social relationships on population spatial structure and ranging tactics. Using current models of socio-ecology as a framework, we explore the spatial behaviors relating to the maintenance of transitive (i.e., linear) dominance hierarchies between elephant social groups despite the infrequent occurrence of contests over resources and lack of territorial behavior. Data collected from seven families of different rank demonstrate that dominant groups disproportionately use preferred habitats, limit their exposure to predation/conflict with humans by avoiding unprotected areas, and expend less energy than subordinate groups during the dry season. Hence, our data provide strong evidence of rank derived spatial partitioning in this migratory species. These behaviors, however, were not found during the wet season, indicating that spatial segregation of elephants is related to resource availability. Our results indicate the importance of protecting preexisting social mechanisms for mitigating the ecological impacts of high density in this species. This analysis provides an exemplar of how behavioral research in a socio-ecological framework can serve to identify factors salient to the persistence and management of at risk species or populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
In Europe, the establishment of the Natura 2000 network is one of the main actions that has been undertaken to contribute to the maintenance of biodiversity. However, the management system of sites included in the network is under question. The aim of this study was to assess the natural resource management applied to the National Park of the wetlands Kotychi-Strofylia, southern Greece, an important site belonging to the European ecological network Natura 2000, and the Ramsar convention. The methodological approach applied follows the general framework of International Unit for Nature Conservation/World Committee for Protected Areas (IUCN/WCPA) for the evaluation of protected areas, and it was based on field monitoring data with a view of providing information in achieving the stated management objectives. Two levels of indicators were used: the first concerned the evaluation of the management process and the second the evaluation of the management outputs and outcomes. The assessment of the natural resources management in the National Park showed that the management of the area is oriented towards biodiversity conservation and lies within the scope of the habitat directive and the ecological network Natura 2000. The framework applied and the methodological approach followed in this study appear to provide a useful basis for designing and conducting management evaluation. The indicators used at local scale can be integrated at regional- and national-scale projects of management evaluation, and, at the same time, the evaluation results can help local managers to improve management by taking the appropriate management measures. The analytical hierarchical conceptual flow suggested seems to be considered as an essential tool for evaluating natural resource management.  相似文献   

7.
Lind EM  Barbosa P 《Ecology》2010,91(11):3274-3283
Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.  相似文献   

8.
Capellini I  Venditti C  Barton RA 《Ecology》2010,91(9):2783-2793
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.  相似文献   

9.
Laughlin DC  Moore MM  Fulé PZ 《Ecology》2011,92(3):556-561
We analyzed one of the longest-term ecological data sets to evaluate how forest overstory structure is related to herbaceous understory plant strategies in a ponderosa pine forest. Eighty-two permanent 1-m2 chart quadrats that were established as early as 1912 were remeasured in 2007. We reconstructed historical forest structure using dendrochronological techniques. Ponderosa pine basal area increased from an average of 4 m2/ha in the early 1900s to 29 m2/ha in 2007. Understory plant foliar cover declined by 21%, species richness declined by two species per square meter, and functional diversity also declined. The relative cover of C4 graminoids decreased by 18% and C3 graminoids increased by 19%. Herbaceous plant species with low leaf and fine root nitrogen concentrations, low specific leaf area, high leaf dry matter content, large seed mass, low specific root length, short maximum height, and early flowering date increased in relative abundance in sites where pine basal area increased the most. Overall, we observed a long-term shift in composition toward more conservative shade- and stress-tolerant herbaceous species. Our analysis of temporal changes in plant strategies provides a general framework for evaluating compositional and functional changes in terrestrial plant communities.  相似文献   

10.
The response of various species to doses of chemicals can often give the impression that some (such as cattle in the case of molybdenum) are much more susceptible than others to these chemicals. These impressions usually rely on an underlying assumption that equivalent doses are based on mg of the chemical per kg body weight of the animal. That is, that doses scale as the first power of body weight. This assumption is more often wrong than right. When viewed in a more general way, where the scaling is proportional to a power of the body weight and the exponent determined empirically, it is often found that equivalent doses scale with an exponent in the range of 0.6 to 0.8. As a result, larger animals are indeed more susceptible to toxicity on a mg kg–1 body weight basis, but this is not because of unique differences in the species, but only because of different body sizes. This method of scaling is called allometry or allometric scaling. An early version of this approach was based on body surface area where the exponent is 2/3. More recently, pharmacokinetics has revealed that the reason for the different response of larger animals is related to the slower metabolic and clearance rates for larger animals which give rise to larger biological half-lives for chemicals in the body and to higher tissue concentrations per given dose.  相似文献   

11.
《Ecological modelling》2005,186(4):489-501
Ecology requires the conceptual and technical ability to analyse complex and dynamic systems consisting of a high and variable number of components and relations. These components are part of a variable interaction structure in a spatially heterogeneous context. The components of ecological interaction networks can give rise to self-organised, and scale-dependent interaction patterns and processes, which are the underlying causes of the overall ecological systems states.The individual-based modelling approach provides a widely applicable simulation framework based on a ‘hierarchy theory’ view of ecological systems.Here, we summarise and generalise the theoretical implications of the modelling studies presented in this volume in the field of terrestrial and aquatic, animal and plant ecology. The case studies cover a representative profile of processes related to ecological applications, such as food web interactions, population dynamics, dispersal, energy physiology, nutrient allocation and mutual impact of morphological and physiological development. The generic approach applied in this context allows a hierarchical representation of ecological systems and their components. Model results are obtained as self-organised structural relation networks and as aggregated quantitative states. In order to address different model characteristics we distinguish collective and emergent properties. Collective properties are those that are attributed equally to different organisation levels of the system. Emergent properties result from the activities of lower level entities on a higher organisation level, while not being present on the lower level. They can be subdivided into aggregational and connective properties. Emergent properties that are aggregational are those which emerge as a result of an aggregation procedure by an observer on the higher level which does not make sense or is not applicable on lower levels. Emergent properties that are connective, however, are based on an interaction network of lower level entities, which brings about the specific system characteristic.This classification of model results will allow to generalise the achievements and potential of the individual-based modelling approach in ecology.  相似文献   

12.
Duncan RP  Forsyth DM  Hone J 《Ecology》2007,88(2):324-333
Many fundamental traits of species measured at different levels of biological organization appear to scale as a power law to body mass (M) with exponents that are multiples of 1/4. Recent work has united these relationships in a "metabolic theory of ecology" (MTE) that explains the pervasiveness of quarter-power scaling by its dependence on basal metabolic rate (B), which scales as M(0.75). Central to the MTE is theory linking the observed -0.25 scaling of maximum population growth rate (rm) and body mass to the 0.75 scaling of metabolic rate and body mass via relationships with age at first reproduction (alpha) derived from a general growth model and demographic theory. We used this theory to derive two further predictions: that age at first reproduction should scale inversely to mass-corrected basal metabolic rate alpha infinity (B/M)(-l) such that rm infinity (B/M)1. We then used phylogenetic generalized least squares and model selection methods to test the predicted scaling relationships using data from 1197 mammalian species. There was a strong phylogenetic signal in these data, highlighting the need to account for phylogeny in allometric studies. The 95% confidence intervals included, or almost included, the scaling exponent predicted by MTE for B infinity M(0.75), rm infinity M(-0.25), and rm infinity alpha(-1), but not for alpha infinity M(0.25) or the two predictions that we generated. Our results highlight a mismatch between theory and observation and imply that the observed -0.25 scaling of maximum population growth rate and body mass does not arise via the mechanism proposed in the MTE.  相似文献   

13.
Scaling mass and morphology in leaves: an extension of the WBE model   总被引:4,自引:0,他引:4  
Price CA  Enquist BJ 《Ecology》2007,88(5):1132-1141
Recent advances in metabolic scaling theory have highlighted the importance of exchange surfaces and vascular network geometry in understanding the integration and scaling of whole-plant form and function. Additional work on leaf form and function has also highlighted general scaling relationships for many leaf traits. However, it is unclear if a common theoretical framework can reveal the general rules underlying much of the variation observed in scaling relationships at the whole-plant and leaf level. Here we present an extension of the general model introduced by G. B. West, J. H. Brown, and B. J. Enquist that has previously been applied to scaling phenomena for whole plants to predict scaling relationships in leaves. Specifically, the model shows how the exponents that describe the scaling of leaf surface area, length, and petiole diameter should change with increasing leaf mass (or with one another) and with variation in leaf dimensionality. The predictions of the model are tested and found to be in general agreement with a large data set of leaves collected from both temperate and arid sites. Our results demonstrate that a general model based on the scaling properties of biological distribution networks can also be successfully applied to understand the diversity of leaf form and function.  相似文献   

14.
Understanding the mechanisms of trait selection at the scale of plant communities is a crucial step toward predicting community assembly. Although it is commonly assumed that disturbance and resource availability constrain separate suites of traits, representing the regenerative and established phases, respectively, a quantification and test of this accepted hypothesis is still lacking due to limitations of traditional statistical techniques. In this paper we quantify, using structural equation modeling (SEM), the relative contributions of disturbance and resource availability to the selection of suites of traits at the community scale. Our model specifies and reflects previously obtained ecological insights, taking disturbance and nutrient availability as central drivers affecting leaf, allometric, seed, and phenology traits in 156 (semi-) natural plant communities throughout The Netherlands. The common hypothesis positing that disturbance and resource availability each affect a set of mutually independent traits was not consistent with the data. Instead, our final model shows that most traits are strongly affected by both drivers. In addition, trait-trait constraints are more important in community assembly than environmental drivers in half of the cases. Both aspects of trait selection are crucial for correctly predicting ecosystem processes and community assembly, and they provide new insights into hitherto underappreciated ecological interactions.  相似文献   

15.
36种典型除草剂对绿藻的毒性研究   总被引:1,自引:0,他引:1  
近年来,农药对生态系统的初级生产者——藻类的毒性及其生态毒理学研究引起了国内外学者的广泛关注。除草剂在生产中广泛应用,对藻类的毒性作用最强,其毒性效应远高于杀虫剂和杀菌剂。论文选择市场上具有典型代表性的36种除草剂原药,分析解读除草剂在国内的登记情况,以及在作物、旱田和水田的使用情况;明晰对藻类生长抑制急性毒性效应。结果表明:1)除草剂的作用方式和化学类别对绿藻毒性影响显著;对于抑制植物细胞分裂和作用于植物叶绿体的除草剂对绿藻毒性均较高,以人工合成植物生长素为代表的除草剂对绿藻毒性均较低;2)相同作用方式,不同化学类别的除草剂,对单一绿藻的毒性差异明显。在水稻上获得登记的除草剂对藻类毒性整体低于在旱田获得登记的除草剂对藻类的毒性。开展多种农药对水生生态毒性的研究,为农药的合理安全使用、农药在淡水环境中的生态效应评价以及保护淡水生态系统提供科学依据。  相似文献   

16.
Clough Y 《Ecology》2012,93(8):1809-1815
The need to model and test hypotheses about complex ecological systems has led to a steady increase in use of path analytical techniques, which allow the modeling of multiple multivariate dependencies reflecting hypothesized causation and mechanisms. The aim is to achieve the estimation of direct, indirect, and total effects of one variable on another and to assess the adequacy of whole models. Path analytical techniques based on maximum likelihood currently used in ecology are rarely adequate for ecological data, which are often sparse, multi-level, and may contain nonlinear relationships as well as nonnormal response data such as counts or proportion data. Here I introduce a more flexible approach in the form of the joint application of hierarchical Bayes, Markov chain Monte Carlo algorithms, Shipley's d-sep test, and the potential outcomes framework to fit path models as well as to decompose and estimate effects. An example based on the direct and indirect interactions between ants, two insect herbivores, and a plant species demonstrates the implementation of these techniques, using freely available software.  相似文献   

17.
Damschen EI  Brudvig LA 《Ecology》2012,93(4):704-710
Local species diversity is maintained over ecological time by a balance between dispersal and species interactions. Local-regional species richness relationships are often used to investigate the relative importance of these two processes and the scales at which they operate. For communities undergoing succession, theory predicts a temporal progression in local-regional species richness relationships: from no relationship to positive linear to saturating. However, observational tests have been mixed, and experiments have been rare. Using a replicated large-scale experiment, we evaluate the impact of two dispersal-governing processes at the regional scale, connectivity and shape of the region (i.e., patches), on the progression of local-regional species richness relationships for plant communities undergoing succession. Regional connectivity accelerates the transition from no relationship to a positive linear relationship, while the shape of the region has no consistent effect nine years post-disturbance. Our results experimentally demonstrate the importance of dispersal in structuring local-regional species richness relationships over time and suggest that conservation corridors among regions can increase local diversity through regional enrichment of plant communities undergoing reassembly.  相似文献   

18.

Background

Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level.

Results

We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data.

Conclusion

The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.
  相似文献   

19.
Cromsigt JP  Olff H 《Ecology》2006,87(6):1532-1541
Recent theoretical studies predict that body size-related interspecific differences in spatial scale of perception and resource use may contribute to coexistence of species that compete for the same class of resources. These studies provide a new theoretical framework for explaining resource partitioning patterns among African ungulates that coexist in spatially heterogeneous savanna grasslands. According to these studies, different-sized ungulates can coexist because larger species forage at a coarser scale but can tolerate lower quality food, whereas smaller species need higher quality food but forage at a finer scale. To test this hypothesis in an African savanna, we created an experimental mosaic with variation in grain (spatial detail) and quality of short-grass patches and directly observed the visitation of naturally occurring grazers to this mosaic over a two-year period (total of 903 observation hours). Of the seven species that visited our experiment, warthog, impala, zebra, and white rhino visited long enough to allow data analysis. We showed that warthog and impala avoided plots with a finer grain of short grass and that warthog preferred fertilized plots to unfertilized plots. Zebra and white rhino did not avoid the finer grain plots. Our results suggest that differences in grain and quality of a resource might indeed contribute to partitioning of this resource by savanna ungulates. Although four focal species is unusually high for an experimental study on resource partitioning among naturally occurring savanna ungulates, this number is too low to evaluate the allometric basis of our hypothesis. Our results, however, encourage wider experimental testing of the role of spatial heterogeneity in facilitating the coexistence of potentially competing savanna herbivores.  相似文献   

20.
Sustainable development has been used in various contexts by theoreticians and practitioners from a number of disciplines. This review explores some of these contexts from basic and applied ecological sciences, social sciences and philosophical works. It is concluded that there is a need to develop a theoretical paradigm that helps to explain the reasons underlying human resource use—a fundamental question that has been ignored in many other studies. A theoretical, evolutionary approach and several premises derived from this approach are offered. The theoretical framework suggests that societal scale, social structure, interrelatedness of individuals, and reciprocal relations between individuals may all be important in determining the types of management programmes that promote sustainable resource use by humans. Examples of solutions to various sustainability issues at different scales, based on different kinds of incentive structures, are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号