首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interference competition for limited habitat or refuges is known to produce density-dependent mortality and generate patterns of micro-habitat distribution. While in mobile species the outcome of interference at a local scale can usually be determined from differences in body size and behavior, the population-level consequences of such interactions vary depending on rates of settlement and recruitment at a site, which are not directly correlated to local reproductive success. Previous experimental studies in central Chile demonstrated that interference competition for refuges is the primary factor driving microhabitat segregation between the predatory crabs Acanthocyclus gayi and Acanthocyclus hassleri, with the latter species monopolizing galleries inside mussel beds and excluding A. gayi to rock crevices. Between April 2001 and March 2006 we quantified monthly recruitment rates in artificial collectors at 17 sites over 900 km of the central coast of Chile. Results show that recruitment rates of A. hassleri are almost two orders of magnitude lower than those of A. gayi, and that they are tightly and positively correlated among sites across the region, suggesting that at scales of kilometers larval stages of these species are affected by similar oceanographic processes. Total crab densities per site were also positively correlated between species and strongly associated to mussel cover, with overall low crab densities at all sites where mussel cover was lower than about 60%. At all sites with mussel cover >60%, the ratio of A. gayi to A. hassleri density progressively decreased from recruits (2.6) to juveniles (0.5) to adults (0.04), overcoming initial differences in recruitment rates. The relative success of the inferior competitor at sites with low mussel cover does not appear to provide a potential mechanism favoring regional coexistence through dispersal to other sites (“mass effects”), because their densities were lower than at sites of high mussel cover. Yet, at many sites of low mussel cover the dominant competitor is virtually absent, allowing A. gayi to attain larger population sizes at the scale of the region. Thus, the factors limiting the dominant competitor from successfully utilizing other microhabitats seem to be the most critical factor in promoting both local and regional coexistence between these species.  相似文献   

2.
V. J. Loeb 《Marine Biology》1979,53(2):173-191
Patterns of species structure are described for the larval fish assemblage in the North Pacific Central Gyre. About 30,000 larvae, primarily of mesopelagic fish species, were identified for 7 cruises. Samples were collected using Isaacs-Kidd plankton trawls on 6 cruises over a 4 1/2 year period; stratified samples were taken with an opening/closing bongo net on one late-summer cruise. Data on absolute and relative abundances, size ranges and summertime depth distributions of over 150 species of larvae are presented. The depth distribution and abundance of the ichthyoplankton are compared to those of the total zooplankton community. The larval assemblage is also examined with respect to the known adult mesopelagic fish assemblage. Seasonal changes in ichthyoplankton species structure occur but, within seasons, species structure is remarkably constant from year to year. Despite seasonal changes in species abundance and rank order of abundance, a constant cumulative frequency structure was found to exist in the ichthyoplankton, both between seasons and between years. The implications of this result are discussed in light of similar findings in a terrestrial community and with respect to possible mechanisms of regulation.  相似文献   

3.
Allen DC  Vaughn CC 《Ecology》2011,92(5):1013-1019
Several decades of research have shown that biodiversity affects ecosystem processes associated with resource capture and the production of biomass within trophic levels. Although there are good reasons to expect that biodiversity influences non-trophic ecosystem processes, such as the physical creation or modification of habitat, studies investigating the role of biodiversity on physical processes are scarce. Here we report the results of a study using artificial streams to test the influence of freshwater mussel biodiversity on gravel erosion during high flows while manipulating mussel abundance. Mussel species vary in traits that should influence their effects on erosion, such as size, shell morphology, and burrowing behavior. We found that mussel species richness was associated with an increase in erosion at both low and high densities. Planned contrasts showed that the erosion observed in species mixtures was purely additive at low density, indicating that erosion in a species polyculture could routinely be predicted by the performance of monocultures. However, at high density certain combinations of species showed nonadditive effects on erosion, suggesting that organism abundance can fundamentally alter biodiversity effects. Although this may have been a result of altered species interactions at high density, our study design cannot confirm this.  相似文献   

4.
Smith JR  Fong P  Ambrose RF 《Ecology》2006,87(5):1153-1161
Mussel beds along the wave-exposed coast of the eastern North Pacific Ocean serve as an important habitat, harboring a high diversity of species. A comparison of California mussel bed community diversity in 2002 to historical data (1960s to 1970s) revealed large declines (mean loss 58.9%), including some declines >141 species (approximately 80% loss). Concurrent work revealed inconsistent changes in mussel populations (biomass and bed thickness) along the California coast, suggesting that diversity declines may be related to large-scale processes rather than local habitat destruction. Potential factors causing declines in mussel community diversity are discussed, with regional climate change associated with the Pacific Decadal Oscillation and climate change induced alterations of ecological interactions and biological processes suggested as likely causes. Although extensive literature has predicted the potential effects of climate change on global diversity, this study is one of the few examples of declines attributed to climate change.  相似文献   

5.
Schooling mackerel and herring choose neighbours of similar size   总被引:1,自引:0,他引:1  
Fish schooling in a submerged sea-cage swam next to neighbours of similar size. Between 57 and 74 fish were used. Extensive three-dimensional data showed the neighbour size effect for two different species, herring and mackerel, during both day and night. These experiments, covering sizes which coexist in the wild, are the first demonstration of the neighbour size choice in fish schools predicted by theories of hydrodynamic advantage.  相似文献   

6.
Siepielski AM  McPeek MA 《Ecology》2010,91(11):3153-3164
A major challenge in ecology is to understand how the millions of species on Earth are organized into biological communities. Mechanisms promoting coexistence are one such class of organizing processes, which allow multiple species to persist in the same trophic level of a given web of species interactions. If some mechanism promotes the coexistence of two or more species, each species must be able to increase when it is rare and the others are at their typical abundances; this invasibility criterion is fundamental evidence for species coexistence regardless of the mechanism. In an attempt to evaluate the level of empirical support for coexistence mechanisms in nature, we surveyed the literature for empirical studies of coexistence at a local scale (i.e., species found living together in one place) to determine whether these studies satisfied the invasibility criterion. In our survey, only seven of 323 studies that drew conclusions about species coexistence evaluated invasibility in some way in either observational or experimental studies. In addition, only three other studies evaluated necessary but not sufficient conditions for invasibility (i.e., negative density dependence and a trade-off in performance that influences population regulation). These results indicate that, while species coexistence is a prevalent assumption for why species are able to live together in one place, critical empirical tests of this fundamental assumption of community structure are rarely performed. These tests are central to developing a more robust understanding of the relative contributions of both deterministic and stochastic processes structuring biological communities.  相似文献   

7.
As larvae, solitary species of parasitoid wasps eliminate rivals, including sibs, through contest competition. In gregarious species, larvae tolerate each other and several individuals can develop from a single host. We report experiments on two congeneric braconid species aimed at understanding how gregarious development evolved in one genus, and the consequences of larval interactions for parental behavior. In the transition from solitary to gregarious development, one possible intermediate stage is if solitary species frequently lay more than one egg per host. If the risk of conspecific superparasitism (another female of the same species oviposits into a single host) is high, optimal clutch size theory predicts the laying of multiple-egg clutches, because a female will increase the probability of the surviving larva being her own. Under the same conditions, theory predicts that gregarious species should reduce their clutch size. In our experiments, the solitary Aphaereta genevensis increased their clutch size under the risk of intraspecific competition for hosts whilst the gregarious A. pallipes reduced their clutch size, as predicted. In A. genevensis, the response to the risk of competition was dependent upon body size, being greatest amongst small females. In A. pallipes, the response did not depend on female body size, but clutch size increased with body size in all treatments, unlike in A. genevensis. Under the risk of competition from the other species, the response differed relative to the intraspecific treatments and differed between species. Thus, our data suggest that: (1) competition for hosts may have contributed to the evolution of gregarious development in this genus; (2) female wasps can combine information from both external and internal cues in complex ways during clutch size adjustment; and (3) the social environment may alter the adaptive response to both external and internal cues in adult females.Communicated by M. Elgar  相似文献   

8.
Fish migrate to spawn, feed, seek refuge from predators, and escape harmful environmental conditions. The success of upstream migration is limited by the presence of barriers that can impede the passage of fish. We used a spatially explicit modeling strategy to examine the effects of barriers on passage for 21 native and non-native migratory fish species and the amount of suitable habitat blocked for each species. Spatially derived physical parameter estimates and literature based fish capabilities and tolerances were used to predict fish passage success and habitat suitability. Both the fish passage and the habitat suitability models accurately predicted fish presence above barriers for most common, non-stocked species. The fish passage model predicted that barriers greater than or equal to 6 m block all migratory species. Chinook salmon (Oncorhynchus tshawytscha) was expected to be blocked the least. The habitat suitability model predicted that low gradient streams with intact habitat quality were likely to support the highest number of fish species. The fish passage and habitat suitability models were intended to be used by environmental managers as strategy development tools to prioritize candidate dams for field assessment and make decisions regarding the management of migratory fish populations.  相似文献   

9.
For many species in seasonal environments, warmer springs associated with anthropogenic climate change are causing phenological changes. Within ecological communities, the timing of interactions among species may be altered if the species experience asymmetrical phenological shifts. We present a model that examines the consequences of changes in the relative timing of herbivory and pollination in a community of herbivores and pollinators that share a host plant. Our model suggests that phenological shifts can alter the abundances of these species and, in some cases, their population dynamics. If historical patterns of interactions in a community change and herbivores become active before pollinators, the community could see a reduction in pollinators and an increase in herbivores, while if pollinators become active before herbivores, there could be a loss of stable coexistence. Previous studies have warned of the potential for climate change to cause large phenological mismatches whereby species that depend on one another become so separated in time that they can no longer interact. Our results suggest that climate change-induced phenological shifts can have a major impact on communities even in cases where complete phenological mismatches do not occur.  相似文献   

10.
Amarasekare P 《Ecology》2007,88(11):2720-2728
Intraguild predation/parasitism (IGP: competing species preying on or parasitizing each other) is widespread in nature, but the mechanisms by which intraguild prey and predators coexist remain elusive. Theory predicts that a trade-off between resource competition and IGP should allow local niche partitioning, but such trade-offs are expressed only at intermediate resource productivity and cannot explain observations of stable coexistence at high productivity. Coexistence must therefore involve additional mechanisms beside the trade-off, but very little is known about the operation of such mechanisms in nature. Here I present the first experimental test of multiple coexistence mechanisms in a natural community exhibiting IGP. The results suggest that, when resource productivity constrains the competition-IGP trade-off, a temporal refuge for the intraguild prey can not only promote coexistence, but also change species abundances to a pattern qualitatively different from that expected based on the trade-off or a refuge alone. This is the first empirical study to demonstrate a mechanism for why communities with IGP do not lose species diversity in highly productive environments. These results have implications for diversity maintenance in multi-trophic communities, and the use of multiple natural enemies in biological control.  相似文献   

11.
Capture success of the medusa Aurelia aurita preying on various developmental stages of fish larvae was measured together with larval reactivity and escape speed after being stung. These experiments were conducted in the spring of 1983 with A. aurita medusae collected from Loch Etive, Scotland and laboratory-reared larvae of Gadus morhua L., Platichthys flesus L., Pleuronectes platessa L. and Clupea harengus L. Capture success of the medusae increased with medusa size, but decreased with advancing larval development. Smaller species of larvae were more vulnerable to capture. Larval reactivity to encounters with medusae increased with advancing development, and larger species of larvae were more reactive to encounters. Larval escape swimming speeds also increased with advancing larval development and size. These results indicate that earlier stages of larvae within a species and smaller species of larvae at a given stage are more vulnerable to predation by medusae since they are less reactive to encounters. Apparently they are more susceptible to the effects of neurotoxins. Predation rates on different developmental stages of herring larvae are documented and compared with rates predicted by a predation model. Predictions fell within the range of observed predation rates, but tended to overestimate rates by larger medusae feeding on larger herring larvae. This indicates the possibility of predator satiation and/or behavioural avoidance.  相似文献   

12.
Clark CJ  Poulsen JR  Levey DJ 《Ecology》2012,93(3):554-564
In tropical forests, resource-based niches and density-dependent mortality are mutually compatible mechanisms that can act simultaneously to limit seedling populations. Differences in the strengths of these mechanisms will determine their roles in maintaining species coexistence. In the first assessment of these mechanisms in a Congo Basin forest, we quantified their relative strengths and tested the extent to which density-dependent mortality is driven by the distance-dependent behavior of seed and seedling predators predicted by the Janzen-Connell hypothesis. We conducted a large-scale seed addition experiment for five randomly selected tropical tree species, caging a subset of seed addition quadrats against vertebrate predators. We then developed models to assess the mechanisms that determine seedling emergence (three months after seed addition) and survival (two years after seed addition). As predicted, both niche differentiation and density-dependent mortality limited seedling recruitment, but predation had the strongest effects on seedling emergence and survival. Seedling species responded differently to naturally occurring environmental variation among sites, including variation in light levels and soil characteristics, supporting predictions of niche-based theories of tropical tree species coexistence. The addition of higher densities of seeds into quadrats initially led to greater seedling emergence, but survival to two years decreased with seed density. Seed and seedling predation reduced recruitment below levels maintained by density-dependent mortality, an indication that predators largely determine the population size of tree seedlings. Seedling recruitment was unrelated to the distance to or density of conspecific adult trees, suggesting that recruitment patterns are generated by generalist vertebrate herbivores rather than the specialized predators predicted by the Janzen-Connell hypothesis. If the role of seed and seedling predation in limiting seedling recruitment is a general phenomenon, then the relative abundances of tree species might largely depend on species-specific adaptations to avoid, survive, and recover from damage induced by vertebrate herbivores. Likewise, population declines of herbivorous vertebrate species (many of which are large and hunted) may trigger shifts in species composition of tropical forests.  相似文献   

13.
A. M. Fowler  D. J. Booth 《Marine Biology》2012,159(12):2787-2796
The amount of artificial habitat (termed ??artificial reef??, AR) in marine systems is rapidly increasing, yet the effect of most types of AR on reef communities remains unknown. We examined the role of well-established vessel-reefs in structuring coral reef fish assemblages by comparing assemblages on 7 World War II wrecks (>65?years old) to those on interspersed coral patch reefs of comparable size in a tropical lagoon. Fish abundance, species richness, diversity and feeding guild structure on wrecks were similar to natural reefs; however, species composition differed between the two reef types (R?=?0.189?C0.341, average dissimilarity: 67.3?C68.8?%). Despite being more species-rich and diverse, fish assemblages on larger wrecks were less similar to assemblages on their adjacent natural reefs than smaller wrecks. Wrecks may also have affected fish abundance on adjacent natural reefs, with reefs adjacent to larger wrecks supporting higher abundances than reefs adjacent to smaller wrecks. Our results indicate that increases in vessel-reef habitat may not greatly affect reef fish assemblage parameters, but may affect the relative abundances of particular species.  相似文献   

14.
Abstract: One major factor leading to the imperilment of freshwater mussels ( Bivalvia, Unionidae) has been the large-scale impoundment of rivers. We examined the distribution and abundance of mussels at 37 sites along a 240-km length of the Little River in southeastern Oklahoma, U.S.A., which is affected by both mainstem and tributary reservoirs. We observed a mussel extinction gradient downstream from impoundments in this river: with increasing distance from the mainstem reservoir there was a gradual, linear increase in mussel species richness and abundance. Mussel species distributions were significantly nested, with only sites furthest from the impoundment containing relatively rare species. Below the confluence with the inflow from the second reservoir these same trends were apparent but much weaker, and overall mussel abundance was greatly reduced. Our results suggest that considerable stream lengths are necessary to overcome the effects of impoundment on mussel populations, and such information should be considered in conservation and management plans.  相似文献   

15.
The structure of the larval fish assemblages in Independencia Bay on the coast of Peru was examined using a combination of univariate and multivariate techniques. The plankton of Independencia Bay was sampled during 2000, to ascertain ichthyoplankton composition, abundance, and seasonality. These data were used to assess the function of the bay as spawning and nursery grounds and were related to the regional oceanography. In total, 16,156 fish larvae, representing 34 families, 48 genera, and 48 species were collected. Engraulidae, Normanichthyidae, Blenniidae, Gobiesocidae, Haemulidae, Labrisomidae, Pinguipedidae, and Atherinidae comprised 96.8% of the larvae captured; the remaining 3.2% included 26 families. Greatest mean larval fish densities, 319–1,381 per 100 m3, were recorded between September and November, suggesting a major spring spawning period. The most abundant fish larvae during this period were preflexion stage mote sculpins (Normanichthyidae) and newly hatched and preflexion stage anchovies (Engraulidae). A second, smaller summer peak was dominated by preflexion stage anchovies, followed by preflexion stage mote sculpins. The occurrence of high larval fish densities and the wide range of larval stages suggest that Independencia Bay is a regionally important spawning and nursery ground for marine fish. The principal component analysis showed that temperature and salinity were the dominant variables within the first two principal components, which accounted for 74.4% of the variation in environmental conditions. These conditions varied over time, station, and depth; however, interaction terms could not clearly be identified. Fitting a multinomial logistic model showed that larval fish assemblages and environmental conditions were associated in a complex way. The spring and summer ichthyoplankton abundance peaks in Independencia Bay coincided with high zooplankton standing stock and also coincided approximately with the periods of increased upwelling in the area.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The coexistence of four cryptic species of Rhabditis (Pellioditis) marina (Nematoda: Rhabditidae) at small geographical scale challenges ecological competition theory and was therefore studied in the laboratory at two different salinities, where their performance in combined cultures was compared with that in monospecies cultures. We found that three of the four cryptic species were able to coexist, but that interspecific interactions (competition and facilitation) were common. Salinity had an effect on these interactions, with a shift from contest to scramble competition. This shift may result from an increased population development of two of the four species at the lower salinity in the monospecific cultures. This experiment demonstrates that abiotic conditions may play an important role in achieving coexistence between cryptic species and can alter the interspecific interactions between them.  相似文献   

17.
The principle of “competitive exclusion” predicts that no two species can occupy the same ecological niche at the same time and place (Hardin, 1960). Hutchinson (1953, 1961) suggested that the vast diversity of phytoplankton observed in many aquatic environments presents an apparent contradiction to this principle. Since all phytoplankton compete for the same basic resources, and since the euphotic zones of most natural waters are relatively homogeneous, such coexisting plankters appear to be simultaneously occupying the same niche. In this paper we present simulation results from a mathematical model wherein we examine the hypothesis that physical turbulence in an aquatic system can mollify interactive pressures between plankton populations and allow coexistence of species competing for the same resources. Using Bella's (1972) highly simplified model as a point of departure, we develop a new model, explicitly incorporating gross physiological mechanisms, to investigate the effects of both advective and turbulent components of water movement on the growth of three competing phytoplankton species. We observed that, in the absence of water motion, no two species were able to coexist, while under the hypothetical conditions of advection without turbulence (laminar flow), just two species were able to occur contemporaneously. Coexistence of all three species was achieved only with the addition of a random turbulent component to the model's hydrodynamic function. Moreover, this general coexistence was observed only when the major turbulent frequency approached the turnover rate of phytoplankton populations. We suggest that there is a limited region of periodicities and magnitudes for hydrodynamic energy in which phytoplankton can coexist, and that most natural aquatic environments fall within this region. We further speculate that, in general, the coupling of physical and biological processes in nature may be influenced by the relative frequency characteristics of those processes.  相似文献   

18.
We employed a novel technique to quantify how blue mussels Mytilus edulis react to predation risk in their environment by quantifying mussel gape using a Hall sensor attached to one shell valve reacting to a magnet attached to the other. Change in gape angle per second (CHIGA) versus gape angle plots resulted in a distribution with a boundary, which defined the maximum CHIGA of a mussel at all gape angles. CHIGA boundary plots for all individual mussels were similar in form. However, the CHIGA boundary increased in extent with mussel length (maximum CHIGA for mussel valve closures for mussels 2.98 and 79.6 mm long were −1.5 and −11°s−1, respectively), showing that larger mussels opened and closed most rapidly. Mussel extract added to the seawater, a factor believed to signal predation, caused mussels to close significantly faster than otherwise (P < 0.001). This approach for assessing how mussels react to their environment indicates that mussel response to predation is graded and complex and may well indicate animal-based assessments of the trade-off between effective feeding and the likelihood of predation.  相似文献   

19.
We evaluate the predictive power and generality of Shipley's maximum entropy (maxent) model of community assembly in the context of 96 quadrats over a 120-km2 area having a large (79) species pool and strong gradients. Quadrats were sampled in the herbaceous understory of ponderosa pine forests in the Coconino National Forest, Arizona, U.S.A. The maxent model accurately predicted species relative abundances when observed community-weighted mean trait values were used as model constraints. Although only 53% of the variation in observed relative abundances was associated with a combination of 12 environmental variables, the maxent model based only on the environmental variables provided highly significant predictive ability, accounting for 72% of the variation that was possible given these environmental variables. This predictive ability largely surpassed that of nonmetric multidimensional scaling (NMDS) or detrended correspondence analysis (DCA) ordinations. Using cross-validation with 1000 independent runs, the median correlation between observed and predicted relative abundances was 0.560 (the 2.5% and 97.5% quantiles were 0.045 and 0.825). The qualitative predictions of the model were also noteworthy: dominant species were correctly identified in 53% of the quadrats, 83% of rare species were correctly predicted to have a relative abundance of < 0.05, and the median predicted relative abundance of species actually absent from a quadrat was 5 x 10(-5).  相似文献   

20.
Gravel D  Beaudet M  Messier C 《Ecology》2008,89(10):2879-2888
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号