首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
灰霾天气的形成与演化   总被引:30,自引:3,他引:27  
由于经济规模迅速扩大和城市化进程加快,大气气溶胶污染日趋严重,由气溶胶造成的能见度恶化事件越来越多,这些人类活动排放的污染物,包括直接排放的气溶胶和气态污染物通过化学转化与光化学转化形成的细粒子二次气溶胶,可形成灰霾(特指人类活动源排放的大气污染物诱发的低能见度事件),致使能见度下降。我国东部地区灰霾天气迅速增加,灰霾天气的本质是细粒子气溶胶污染,与光化学烟雾相关联,形成灰霾天气的气溶胶组成非常复杂。近年来由于灰霾天气日趋严重引发的环境效应问题和气溶胶辐射强迫引发的气候效应问题,广泛地引起科学界、政府部门和社会公众的关注,而成为热门话题。文章讨论了目前对灰霾天气的认识,灰霾的定义与判别标准,灰霾天气与光化学烟雾、气象条件的关系,也涉及灰霾天气对人体健康的影响。展望了灰霾研究的前景与主要研究方向和内容。  相似文献   

2.
近三十年温州市区年灰霾天数变化大致经历了"少-增多-减少-急速增多"四个阶段,灰霾天气多出现于冬春季节,秋季最少,出现最多的月份主要集中在1月和12月。灰霾的月、季变化趋势主要与当地的气象条件有关,而年际变化多与大气复合污染物浓度有关。近十年的灰霾天数变化与大气常规污染物浓度变化趋势关联度不大,主要是现有的空气质量监测体系只考虑了SO2、NO2、PM10三项指标,而忽略了与灰霾天气密切相关的PM2.5细颗粒等指标。  相似文献   

3.
多元观测资料融合应用的灰霾天气关键成因研究   总被引:3,自引:1,他引:2  
利用临安作为区域大气本底站的优势和杭州大气复合污染综合观测设施,再融合DMSP/OLS夜间灯光数据及气象观测数据,从不同层面研究了灰霾天气形成的主导因素.通过浙江省灰霾日数空间分布与同时期Defense Meteorological Satellite System (DMSP)/Operational Linescan System (OLS)卫星遥感得到的夜间灯光分布对比以及1960-2009年间杭州和浙江省年平均灰疆日数演变过程,从空间和年代际变化两个角度论证了当前不科学的社会发展是造成灰霾天气日益严重的根本原因.通过杭州和临安本底站实际观测对比发现,对灰霾天气形成起主要作用的是细粒子,关键排放因子不是尘粒等气溶胶,而是黑碳、NO2、SO2等.脱硫减排可以使霾污染有所减缓,但由汽车尾气等排放的含氮前体物对霾污染的贡献却越显突出.气象条件是灰霾天气形成的外部控制因素.在各种天气形势中,由于高压控制下下沉气流明显、大气相对稳定,出现灰霾天气的概率最高,达64.5%.除天气形势、大气稳定度外,风速、气温、湿度、气压、降水、变温等地面气象因子及前1日PM10浓度对污染物浓度皆有一定影响,其中降水、湿度、风速与污染物浓度之间的相关性最显著,是灰霾天气形成的关键气象因子.  相似文献   

4.
西安市灰霾天气时间和区域分布特征及影响因素   总被引:2,自引:0,他引:2  
依据1961—2005年共45年,西安、户县、长安、蓝田、临潼、高陵和周至7个气象台站灰霾观测资料,分析了灰霾天气时间和区域分布特征,并根据1996—2005年近10年西安逐月平均灰霾日数与近10年逐月主要气象要素相关性分析,得出:西安市20世纪70年代是灰霾日出现的高峰时期,并呈逐年减少趋势,灰霾发生的中心区域也在向郊区东南部转移;从影响灰霾天气形成的气象条件来看,气温越低,降水量和风速越小,日照越少,气压越高,越有利于灰霾天气的形成。  相似文献   

5.
正近年来北京市雾霾天气频发,严重影响到市民正常的生产与生活。霾是主要由人类不合理的社会活动造成的细粒子气溶胶污染(主要指PM2.5),雾霾天气除主要受区域大气污染物排放量的影响外,同时亦受众多气象因子的影响,包括温度、相对湿度、气压、风等等。当源排放达到最不利扩散气象条件的容量限值时,开始出现霾天气;当源排放达到一般扩散气象条件的容量限值时,霾天气频发;源排放  相似文献   

6.
2014年12月28日-2015年1月5日重庆市发生了一次大范围、持续性的重霾污染天气。文章利用常规污染物数据和MODIS遥感数据,结合HYSPLIT轨迹模式对此次污染进行分析。研究表明,此次重霾污染时段首要污染物PM_(2.5),主要以人为源排放为主。同时近地面不利于污染物扩散的气象条件以及大范围秸秆集中燃烧是本次持续性重污染的主要原因。  相似文献   

7.
利用泉州市空气自动监测站的监测资料,研究泉州市灰霾天气时PM2.5浓度与风速、温度、相对湿度等气象因素及能见度的关系.结果表明:泉州市灰霾天气期间往往会伴随气象因素及能见度的变化,灰霾发生前,风速降低,相对湿度减小,逆温层形成,能见度降低;灰霾结束前,风速增大,相对湿度趋于稳定,逆温层消失,能见度增大.灰霾发生时,PM2.5的浓度与风速、能见度基本呈负相关的关系,与相对湿度基本呈正相关关系.气象条件及能见度的变化可以为灰霾天气时污染状况的预判提供重要的参考.  相似文献   

8.
通过近30年雾霾天气分析发现,咸阳市雾霾天气气候特征是:雾霾天气主要发生在秋冬及初春,其中秋冬季最多;南部明显多于北部,年平均北部5天~10天,南部20天左右,咸阳、兴平最多,达25天~30天;重度灰霾主要出现在11月—次年2月,重度灰霾天气与平均最长无降水日数(干旱时间)呈正相关,与月降水量、降水日数呈负相关;近10年来,咸阳南部地区秋冬季雾霾天数显著增加,强度增强。咸阳市雾霾天气成因:(1)特殊的地理环境;(2)气象条件;(3)近年来工业化、城市化加快,空气中悬浮颗粒物的增加。结论:减少或减轻雾霾天气的根本途径应从改善环境气象条件和减少污染物排放着手。建议:(1)气候可行性论证应融入城市规划布局工作。(2)加强监测预报和科普宣传。(3)重视人工增雨(雪)在消减雾霾作用的发挥。  相似文献   

9.
利用SPAMS研究石家庄市冬季连续灰霾天气的污染特征及成因   总被引:21,自引:15,他引:6  
周静博  任毅斌  洪纲  路娜  李治国  李雷  李会来  靳伟 《环境科学》2015,36(11):3972-3980
2014年11月18~26日石家庄市发生了连续的灰霾天气.利用位于石家庄市大气自动监测站(20 m)的单颗粒气溶胶质谱仪(SPAMS)分析了细颗粒物的化学组成,根据石家庄市大气污染物排放源谱库对主要成分进行了来源解析,并结合颗粒物质量浓度和气象条件研究了该地区冬季灰霾天气成因.结果表明,石家庄市大气细颗粒物来源分为7类,各源示踪离子:燃煤源为Al,工业源为OC、Fe、Pb,机动车尾气源为EC,扬尘源为Al、Ca、Si,生物质燃烧源为K和左旋葡聚糖,纯二次无机源为SO-4、NO-2和NO-3,餐饮源为HOC.灰霾期间大气中主要含有OC、HOC、EC、HEC、ECOC、富钾颗粒、矿物质和重金属等8类颗粒,其中OC和ECOC颗粒最多,分别占到总数的50%和20%以上,OC颗粒主要来自燃煤和工业工艺,ECOC颗粒主要来自燃煤和机动车尾气排放.灰霾发生时含有NH+4、SO-4、NO-2和NO-3等二次离子的颗粒物占比升高,其中含NH+4颗粒增幅最大;EC、OC与NO-3、SO-4、NH+4在灰霾天气下的混合程度均比干净天气高,其中与NH+4的混合程度加剧最为明显.冬季采暖期煤炭的大量燃烧、医化行业工艺过程及机动车尾气等污染源排放的一次气态污染物(SO2、NOx、NH3、VOCs)和一次颗粒物在静稳天气中难以扩散而迅速累积,气态污染物发生二次转化形成硝酸铵、硫酸铵,而颗粒物之间通过碰撞形成二次颗粒物并发生不同程度的混合,从而导致大气能见度下降,以上是石家庄市冬季灰霾形成的主要原因.  相似文献   

10.
挥发性有机污染物排放控制标准体系的建立与完善   总被引:1,自引:1,他引:0  
江梅  张国宁  邹兰  魏玉霞  张明慧 《环境科学》2013,34(12):4751-4755
以大气灰霾为代表的区域复合污染问题,导致挥发性有机物(VOCs)成为重点控制的污染物之一.通过对国家和地方挥发性有机污染物排放标准现状分析,依据排放特征以及我国挥发性有机物排放清单,建立和完善挥发性有机物排放控制标准体系.  相似文献   

11.
利用2014-2018年环保部空气污染监测资料以及同期NCEP/NCAR再分析资料,统计分析了冬季长三角地区强霾污染过程中大尺度环流背景场及气象要素对强霾污染的影响.结果表明:2014-2018年冬季长三角地区共发生5次强霾污染过程,每年冬季的12月和1月是强霾污染事件发生的高频时期.当大气中相对湿度维持在较高的水平并且维持较小的风速时,更有利于污染物的累积从而导致强霾污染事件的发生.雾霾天气的发生发展与大气环流有着密切联系,在强霾污染过程发生初期,污染物大多伴随冷空气由北向南输送至长三角地区,对流层中层500 hPa的大尺度环流形势多以纬向环流为主.严重污染发生时,长三角地区受平直西风气流影响,对流层低层850 hPa等压线较为稀疏,长三角地区受均压场或高压控制频繁,稳定的大气层结使污染物更易在近地层累积,随后大风伴随冷锋过境将污染物快速清洁导致PM2.5浓度迅速降低.  相似文献   

12.
2014年河北中南部两次重霾天气成因分析   总被引:4,自引:0,他引:4  
利用河北省环保局环境监测站提供的污染物浓度数据及常规气象观测数据、NCEP再分析资料,结合HYSPLIT4.9后向轨迹模式,对2014年10月上旬发生在河北省的2次大范围的重霾天气特征和成因进行综合分析.结果表明,这2次重污染天气过程PM2.5地面浓度最大值出现在邢台,为507μg/m3,水平能见度不足1km.均压场的分布和较为平稳的高空形势为2次霾天气提供了有利的气象背景.高湿,静小风以及较低的混合层高度不利于污染物扩散,是导致这两次重污染天气持续的主要原因.结合卫星火点及污染物来源分析表明,河北南部及周边省份的秸秆燃烧加重了第2次过程的污染,污染气团的输送对区域性重霾天气产生重要影响.  相似文献   

13.
为探究沈阳地区重污染天气成因,文章利用地面、高空气象观测资料、风廓线雷达资料、NECP再分析资料以及大气污染物监测资料,对2019年3月1~6日沈阳地区出现的一次持续性重污染天气过程,探讨了大气污染物质量浓度、地面气象要素变化特征、大气环流配置与外来输送等特征.结果表明,均压场、地面风场弱及辐合、高温高湿是本次重污染天...  相似文献   

14.
通过近一年来我国大气环境的严重污染,分析了雾霾天气的成因及燃煤锅炉对大气污染的贡献,指出了燃煤锅炉污染的现状,探讨了在锅炉烟尘污染治理方面的措施。  相似文献   

15.
2013年1月份,全国大面积爆发雾霾天气,根据常州市区1月份空气质量环境监测数据和气象资料,分析了造成市区1月份空气质量下降的主要原因;气象因素往往制约着大气污染物的稀释、扩散、输送和转化过程,进而影响大气污染物的分布及污染物浓度,降水、风速、温度、相对湿度、天气形势对大气污染时空分布均会造成影响;气象因素与大气污染的特征及其相互关系研究可以为有关部门制定防治大气污染、保护城市生态环境的决策提供科学、有效的依据,更好的提高人民生活质量。  相似文献   

16.
为总结出霾天气发生时的相关影响因子、特征共性,选取长三角地区8个主要城市,2016~2019年秋冬季发生的7次典型霾天气过程,对比分析了3次霾天气过程中AQI、PM2.5浓度、气象要素、天气形势、边界层特征的变化以及污染物来源.结果表明:不利的气象条件及高低空配置的静稳天气型导致霾天气的形成.3次过程AQI指数峰值分别为247、306及272,与PM2.5浓度变化趋于一致.PM2.5浓度和能见度呈明显负相关关系,且污染过程发生时能见度普遍偏低,2、3次过程能见度谷值均低于50m.高相对湿度、稳定的气温及静风与霾过程的形成有着紧密的联系.总体上混合层高度与AQI呈现负相关关系,混合层高度较低抑制垂直对流,从而使污染物在低空区域性积聚,3次污染过程混合层高度最低值均小于100m.逆温层的出现利于霾污染过程中污染物的累积,近地层的贴地逆温将污染物集聚在地表,第1次过程贴地逆温强度高达8.2℃;脱地逆温导致污染物在边界层内堆积并抑制其扩散,均易导致高浓度污染发生,第2次过程脱地逆温为主,强度高达4.8℃.气溶胶类型多为沙尘、大陆型污染物、污染型沙尘及烟粒.污染发生通常受局地排放、区域输送及长距离输送的共同影响,气团携带的因人为产生的细粒子也是造成污染的主要原因之一.  相似文献   

17.
西安一次霾重污染过程大气环境特征及气象条件影响分析   总被引:11,自引:1,他引:10  
利用西安区域8个气象站点的气象观测资料及西安市13个环境质量监测站点的空气污染物浓度监测资料,对2013年12月16—25日西安地区一次长时间重污染霾天气过程的污染特征及成因进行了分析.结果表明此次霾重污染天气过程主要是一次在不利气象条件下形成的高浓度颗粒物污染事件,其中有54.6%的霾属于干霾,其余属于湿霾.气压场偏弱,气压梯度力小,风速小,弱冷空气形成的下冷上暖的稳定性层结等天气形势有利于霾重污染的形成与维持;弱的降温与相对湿度增大叠加,有利于气溶胶吸湿增长而加重霾的强度.关中盆地特有的喇叭口地形通风不畅,造成外来输送与当地排放的大量污染物堆积,为此次长时间霾发生提供了增强条件.低的混合层厚度抑制了垂直方向上的对流输送,严重削弱了大气垂直扩散能力,造成了大气中各类污染物浓度的大量积聚,是造成此次霾重污染过程的重要原因之一.城市污染加重热岛效应、热岛效应反过来通过热岛环流改变城市污染物传播扩散规律并加重污染,二者相互作用、互为增强条件.  相似文献   

18.
利用2010~2013年逐时霾、能见度和空气质量监测数据,分析了深圳霾天气的变化特征、霾与空气质量和气象条件的关系.结果表明:深圳市霾日数总体呈现增多增强趋势,2009年开始明显下降;霾日数呈“V”型月变化:即秋冬季多、春夏季少,秋冬季多发持续时间长、影响严重的霾过程,春夏季多发持续时间短的霾过程; 霾常伴有污染发生(35%),污染以轻度污染为主;霾时首要污染物PM2.5最多、其次O3,这说明PM2.5是造成深圳霾的主因,且深圳光化学污染严重. 霾时PM2.5、PM10 和O3季节变化明显,冬春季首要污染物以PM2.5为主(75%以上),夏秋季O3和PM2.5为主;分析还发现,风、相对湿度与霾密切相关,风速越弱,湿度越大, 越利于霾出现和发展.约80%的中重度霾出现在风速<2m/s,相对湿度70%~90%的情况下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号