首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.  相似文献   

2.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   

3.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

4.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

5.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

6.
This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4(2-)), ammonium (NH4(+)), and nitrate (NO3(-)). NH4(+) is neutralized mainly by SO4(2-) rather than by NO3(-), except in winter when SO4(2-) concentration is relatively low, whereas NO3(-) concentration is high. The equivalent ratio of NH4(+) to the sum of SO4(2-) and NO3(-) is < 1, suggesting that SO4(2-) and NO3(-) are not completely neutralized by NH4(+). At both rural and urban sites, SO4(2-) concentration displays a maximum in summer and a minimum in winter, whereas NO3(-) displays an opposite seasonal trend. Mass ratio of NO3(-) to SO4(2-) is consistently < 1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concentrations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

7.
Size fractionated chemical speciation of acidic aerosols were performed for ammonium sulfate, other sulfates, ammonium nitrate and other nitrates in a sub-tropical industrial area, Bina, India during December 2003 to November 2004. Analysis of variance (ANOVA) revealed highly significant temporal variations (p > .001) in the concentrations of nitrate and sulfate aerosols in all the three size fractions (fine, mid-size and coarse). Winter demonstrated utmost concentrations of ammonium sulfate, which ranged from 3.2 to 26.4 microg m(-3) in fine particles and 0.20-0.34 microg m(-3) in coarse particles. Ammonium sulfate was chiefly in fine mode (43.77% of total particulate sulfate) as compared to coarse particles (28.60% of total particulate sulfate). The major fraction Ammonium sulfate existed in different forms in atmospheric aerosols, for example NH4Fe(SO4)2, (NH4)2SO4, (NH4)3H(SO4)2 in fine particles, and (NH4)4(NO3)SO4+ in coarse particles. Other sulfate concentrations were also higher during winter ranging from 1.89 to 14.3 microg m(-3) in fine particles and 0.12-0.65microg m(-3) in coarse particles. Ammonium nitrate constituted the major fraction of total particulate nitrate all through the year and was principally in fine particles (the highest concentration in January i.e. 14.2 microg m(-3)). Other nitrates were mainly distributed in the fine particles (highest concentration in January i.e. 11.2 microg m(-3)) All the sulfate and nitrate species were mainly distributed in fine mode and have significant impact on human health.  相似文献   

8.
Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 degrees C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4(2-) via reduction to SO2; (2) NH4+ and NO3- via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured "other" category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   

9.
Atmospheric concentrations of gaseous NH3 and HNO3 and of particulate NH4+ and NO3- were measured during various seasons at a forest ecosystem research site in the "Fichtelgebirge" mountains in Central Europe. Air masses arriving at this site were highly variable with respect to trace compound concentration levels and their concentration ratios. However, the distributions of NH4+ and NO3- within the aerosol particle size spectra exhibited some very consistent patterns, with the former dominating the fine particle concentrations, and the latter dominating the coarse particles range, respectively. Overall, the particulate phase (NH4+ + NO3-) dominated the atmospheric nitrogen budget (particulate and gas phase, NH4+ + NO3- + NH3 + HNO3) by more than 90% of the median total mixing ratio in winter, and by more than 60% in summer. The phase partitioning varied significantly between the winter and summer seasons, with higher relative importance of the gaseous species during summer, when air temperatures were higher and relative humidities lower as compared to the winter season. Reduced nitrogen dominated over oxidized nitrogen, indicating the prevailing influence of emissions from agricultural activity as compared to traffic emissions at this mountainous site. A model has been successfully applied in order to test the hypothesis of thermodynamic equilibrium between the particulate and gas phases.  相似文献   

10.
Fang GC  Wu YS  Chang SY  Rau JY  Huang SH 《Chemosphere》2006,64(8):1253-1263
The characterization for water-soluble species of total suspended particulate (TSP), dry deposition flux, and dry deposition velocity (V(d)) were studied at Taichung Harbor (TH) and Wuchi traffic sampling sites at offshore sampling site near Taiwan Strait of central Taiwan during March 2004-January 2005. The average concentrations of TSP and dry deposition flux at the TH sampling site were higher than at the WT sampling site during the sampling period. The samples collected were analyzed by a ion chromatography (DIONEX-100) for the ionic species (Cl(-), SO(4)(2-), NO(3)(-), NH(4)(+), Na(+), Ca(2+), and Mg(2+)) analysis. The dominant ionic species for TSP are SO(4)(2-), NO(3)(-), and NH(4)(+) of the total mass of the inorganic ions at both sampling sites. In addition, the results indicated that the NH(4)(+), NO(3)(-) and SO(4)(2-) showed higher concentrations in winter and lower in summer for both TH and Wuchi sampling sites. Statistical methods such as correlation coefficient and principal component analysis were also used to identify the possible pollutant source.  相似文献   

11.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

12.
Ambient air quality data were analyzed to empirically evaluate the effects of reductions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) emissions on weekday and weekend levels of ozone (O3; 1991-1998) and particulate NO3- (1980-1999) in southern California. Despite significantly lower O3 precursor levels on weekends, 20 of 28 South Coast Air Basin (SoCAB) sites (28 of all 78 southern California sites) showed statistically significant higher mean O3 levels on Sundays than on weekdays (p < 0.01); 49 of the remaining 50 sites showed no significant differences between mean weekday and Sunday peak O3 levels. We also observed no statistically significant differences between mean weekday and weekend concentrations of particulate NO3- or nitric acid (HNO3, the precursor of particulate NO3-). Averaged over sites, the mean Sunday NOx and nonmethane hydrocarbon concentrations were 25-41% and 16-30% lower, respectively, than on weekdays. Site-to-site differences between weekend and weekday mean peak hourly O3 levels were related to whether O3 formation was limited by the availability of NOx. A thermodynamic equilibrium model predicts that particulate NO3- levels would decrease in response to a reduction of HNO3, and that particulate ammonium NO3- formation was not limited by the availability of ammonia. The similarity of mean weekday and weekend levels of NO3- therefore did not result from limitations on the formation of particulate NO3- from its precursor, HNO3.  相似文献   

13.
Several collocated semicontinuous instruments measuring particulate matter with particle sizes < or =2.5 microm (PM2.5) sulfate (SO4(2-)) and nitrate (NO3-) were intercompared during two intensive field campaigns as part of the PM2.5 Technology Assessment and Characterization Study. The summer 2001 urban campaign in Queens, NY, and the summer 2002 rural campaign in upstate New York (Whiteface Mountain) hosted an operation of an Aerosol Mass Spectrometer, Ambient Particulate Sulfate and Nitrate Monitors, a Continuous Ambient Sulfate Monitor, and a Particle-Into-Liquid Sampler with Ion Chromatographs (PILS-IC). These instruments provided near real-time particulate SO4(2-) and NO3- mass concentration data, allowing the study of particulate SO4(2-)/NO3- diurnal patterns and detection of short-term events. Typical particulate SO4(2-) concentrations were comparable at both sites (ranging from 0 to 20 microg/m3), while ambient urban particulate NO3- concentrations ranged from 0 to 11 microg/m3 and rural NO3- concentration was typically less than 1 microg/m3. Results of the intercomparisons of the semicontinuous measurements are presented, as are results of the comparisons between the semicontinuous and time-integrated filter-based measurements. The comparisons at both sites, in most cases, indicated similar performance characteristics. In addition, charge balance calculations, based on major soluble ionic components of atmospheric aerosol from the PILS-IC and the filter measurements, indicated slightly acidic aerosol at both locations.  相似文献   

14.
The objective of the National Dry Deposition Network is to determine patterns and trends of dry deposition for various sulfur and nitrogen species at roughly 50 locations throughout the continental USA. Each site is equipped for collection of continuous meteorological and ozone data and weekly average concentrations of SO4(2-), NO3-, SO2 and HNO3, using a three-stage filter pack. Results from 40 eastern US sites operational throughout 1989 show species-dependent variability from site to site, season to season, and day to night. Annual average concentrations of atmospheric SO4(2-), NO3-, SO2 and HNO3 ranged from 2.7 to 7.9, 0.2 to 3.9, 2.4 to 23.2 and 0.7 to 3.6 microg/m(-3), respectively. Seasonal variability was considerable for all constituents. Day/night data indicate that SO2 and HNO3, but not SO4(2-) and NO3-, are typically found at moderately to substantially lower concentrations at night, especially during spring and summer. Estimated dry deposition for SO2 and HNO3 appear to be much greater than for SO4(2-) and NO3-, respectively. Comparison of measured wet deposition and estimated dry deposition at numerous sites suggests that the two are similar in magnitude over much of the eastern USA.  相似文献   

15.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   

16.
Chemical coupling between ammonia, acid gases, and fine particles   总被引:2,自引:0,他引:2  
The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.  相似文献   

17.
Chen SJ  Hsieh LT  Tsai CC  Fang GC 《Chemosphere》2003,53(1):29-41
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days.  相似文献   

18.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   

19.
Acid neutralization of precipitation in Northern China   总被引:4,自引:0,他引:4  
There is an increasing concern over the impact of human-related emissions on the acid precipitation in China. However, few measurements have been conducted so far to clarify the acid-neutralization of precipitation on a regional scale. Under a network of 10 sites across Northern China operated during a 3-year period from December 2007 to November 2010, a total of 1118 rain and snow samples were collected. Of this total, 28% was acid precipitation with pH < 5.6. Out of these acid samples, 53% were found heavily acidic with pH value below 5.0, indicating significantly high levels of acidification of precipitation. Most of the acidity of precipitation was caused by H2SO4 and HNO3, their relative contribution being 72% and 28%, respectively. However; the contribution of HNO3 to precipitation acidity will be enhanced due to the increasing NO(x) and stable SO2 emissions in future. Neutralization factors for K+, NH4+, Ca2+, Na+, and Mg2+ were estimated as 0.06, 0.71, 0.72, 0.15, and 0.13, respectively. The application of multiple regression analysis further quantified higher NH4+ and Ca2+ contribution to the neutralization process, but the dominant neutralizing agent varied from site to site. The neutralization was less pronounced in the rural than urban areas, probably due to different levels of alkaline species, which strongly buffered the acidity. Presence of high concentrations of basic ions was mainly responsible for high pH of precipitation with annual volume-weighted mean (VWM) values larger than 5.6 at several sites. It was estimated that in the absence of buffering ions, for the given concentration of SO4(2-) and NO3-, the annual VWM pH of precipitation would have been recorded around 3.5 across Northern China. This feature suggested that emissions of particles and gaseous NH3 played very important role in controlling the spatial variations of pH of precipitation in the target areas.  相似文献   

20.
The catchments of East and West Bear Brooks, Maine, USA, have been hydrologically and chemically monitored for 3.5 years. Stream chemistries and hydrographs are similar. These clear water streams are low in ANC (0-70 microeq litre(-1)), with variations caused by changing concentrations of base cations, SO4, NO3 and Cl. The latter range between 90-120, 0-40 and 65-75 microeq litre(-1), respectively. The West Bear catchment is being treated with six applications per year of dry (NH4)2SO4 at 1800 eq ha(-1) year(-1). After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Retentions of NH4 and SO4 are nearly 100% and greater than 80%, respectively. The additional flux of SO4 is compensated principally by an increased Ca concentration. Episodes of high discharge in the treated catchment are now characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeq litre(-1) during the dormant season, presumably due to additional nitrification of N from NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号