首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于中国南方电网某公司下属各局所辖区域内自2000年以来山火诱发高压输电线路跳闸事故的统计数据,从季节和月份等时间因素及地势地貌和林分类型等空间因素进行分布规律分析,确定山火诱发同步跳闸频率;为进一步探讨易爆发山火地区存在的问题和安全隐患,利用全国森林火险气象警报图与谷歌地球软件相结合的方法,对南方五省份(广西、广东、云南、贵州和海南)输电线路因山火跳闸的重灾区进行初步识别和划分。结果表明:时间上,可致跳闸的山火爆发具有季节性,一般集中于每年2—4月和每日11:00—18:00,发生频率依次为71.2%和91.2%,而在输电线路因山火跳闸率最高的2月份,云南西北部和广东北部的局部区域森林火险气象等级达到5级;空间上,可致跳闸的山火发生在阳坡的频率为94.1%,其中在缓坡和直线坡发生频率依次为50.0%和55.6%;维持山火可燃物多为桉树等油性速生林,发生频率为58.5%。此外,在地域分布上,云南、广西及南方五省份交界处由于森林覆盖稠密且高压输电线路分布密集,山火诱发跳闸事故较为严重。  相似文献   

2.
鸟是人类的朋友,人类在爱护鸟类的同时,也受到鸟类的困扰。鸟在输电线路铁塔上筑巢、排便就是一个令人头痛的问题。为提高电力系统输电线路运行的可靠性,避免由于鸟类筑巢而导致输电线路发生对地短路事故,有必要采取措施驱赶鸟类而又不伤害鸟类。  相似文献   

3.
为揭示真实环境下输电线路山火隐患特征,提出基于中继-巡视协同作业的无人机巡查技术方案,在全国多个省市开展基于中继-巡视无人机的输电线路巡视作业,深入分析输电线路山火隐患特征。结果表明:输电线路隐患主要包括山火隐患、现场施工隐患以及线路主体隐患,山火隐患占比77.2%是影响输电线路安全的最主要因素。山火隐患从产生原因可分为焚烧杂草、燃烧秸秆、林地/防护林着火以及祭拜烧纸。山火隐患具有明显的时空分布特征,4月份的山火隐患主要集中于清明节祭拜烧纸,78.7%的山火隐患发生在距输电线路50 m以外的区域。山火隐患共包括122次单火源隐患和61次多火源隐患,多火源隐患中双火源隐患较多占比达45.9%,78.6%的多火源点间距位于0~30 m区间。山火隐患的火源面积分布广泛,最大火源面积26.4 m2,最小火源面积0.12 m2,整体上84.4%的火源面积小于4 m2。  相似文献   

4.
输电线路受外力破坏应变监测方法研究   总被引:1,自引:0,他引:1  
输电线路通过金具与杆塔连接,线路受力直接传递到金具上,因此,金具可以反映线路的受力.基于这一原理,提出通过金具表面应变变化监测输电线路受力破坏情况.利用输电线路模拟试验台进行应变试验,应变片分别黏贴在金具不同部位,通过对线路施加载荷,测量应变信号.结果表明,金具某些部位应变变化与受力之间成线性关系,适合作为检测信号以监...  相似文献   

5.
针对输电线路工程施工作业风险全过程安全管控需求,从\"人、机、料、法、环\"5个维度,梳理了线路工程施工过程风险点,重点针对人的不安全行为、物的不安全状态和作业的不安全环境,利用电力物联网技术,从感知层、网络层、平台层和应用层4个方面分析了基建现场作业风险管控平台架构及内容,完成了输电线路工程施工作业风险点分析及感知层建设,进一步提升了线路工程基建现场作业风险管控技术水平.  相似文献   

6.
穿越城区的高压输电线路电磁污染研究   总被引:4,自引:0,他引:4  
赵莲清 《安全》2004,25(6):6-8
随着社会的进步、人们生活水平的提高和科学技术的发展,各行各业对电力的需求迅速增长.为了满足远距离、大容量输电和联网的需要,输电电压不断提高,超高压输电目前已经广泛使用.而输电电压的提高,输电技术在绝缘问题和电磁环境等方面受到更严峻的考验.不必讳言,以往输电线路的绝缘问题没得到更多的重视,而随着人们科技水平的提高,对自己的生存环境越来越重视,也有更多的人对于高压输电线路的电磁环境越来越关注.  相似文献   

7.
8.
输电线路鸟害的防护   总被引:1,自引:0,他引:1  
薛福连 《安全》2009,30(3):44-45
近年来,由于生态环境的变化改变了鸟的生存状态,在一些地区鸟巢筑在电力系统输电线路的铁塔上,而由于鸟类活动引起的电力系统断路器跳闸事故发生的频次随之增加。因此电力系统对线路上鸟害防护工作的重视程度逐年提高。  相似文献   

9.
目前关于输电铁塔基础结构安全评价的文献较少。针对输电线路铁塔基础安全评价问题,首先,确定了输电线路铁塔基础安全评价指标体系;然后,采用层次分析法和模糊综合判断法构建了输电线路铁塔基础安全评价模型,详细分析了材料表观、环境及材料等多重指标,建立了一套比较完整的输电线路铁塔基础安全评价方法。采用该方法,先用层次分析法计算指标权重,再用模糊综合判断法进行安全评估。结果表明,输入铁塔基础结构的表观因素、环境因素及材质因素等,可对其各安全影响因素进行分级评价,确定输电线路铁塔基础的安全等级。  相似文献   

10.
针对输电线路工程施工安全评价的模糊性和随机性,采用层次分析法和熵权法分别确定评价指标的主观和客观权重,引入博弈论进行综合赋权,构建基于博弈论和云模型的输电线路工程施工安全评价模型.结果表明,该模型评价结果合理、可靠,具有良好的应用价值.  相似文献   

11.
    
This work investigates the suppression effect of Novec-1230 on H2 jet flame. The suppressants are motivated by N2 flow to get higher momentum and approach the reaction kernel at flame base. The flame area with Novec-1230 is always smaller than that with water mist at the same condition. Novec-1230 exhibits better suppression effect on reaction kernel. The higher-momentum jet flame is more difficult to be suppressed. This is because that the higher-momentum flame makes the suppressant approach the reaction kernel more difficult. In addition, the high N2 flow rate containing suppressant could destroy flame temperature structure and decrease it. Results inferred that the temperature of flame with Novec-1230 is higher than that with water mist. Moreover, the lower minimum extinguishing time indicates that the suppression efficiency of Novec-1230 is better than that of water mist. The jet flame is extinguished only when H2 flow rate is low and N2 flow rate is high. There are two reasons: one is that the higher-momentum jet flame prevents suppressants to enter flame core. The other one is that the burner nozzle is heated to as igniting source during suppression progress. Furthermore, the burning velocity, adiabatic flame temperature, heat production and free radicals are investigated theoretically at Φ = 1.6, 1.0, 0.8 and 0.6. Results indicate that the burning velocity with Novec-1230 is much lower than that with water mist. The adiabatic flame temperature, heat production and free radicals increase firstly and then decrease with Novec-1230 addition at lean flame.  相似文献   

12.
    
To reveal clearly the effects of particle thermal characteristics on flame microstructures during organic dust explosions, three long-chain monobasic alcohols, solid at room temperature and similar in physical-chemical properties, were chosen to conduct experiments in a half-closed chamber. In the experiments, the dust materials were dispersed into the chamber by air to form dust clouds and the hybrids were ignited by an electrical spark. A high-speed optical schlieren system was used to record the flame propagation behaviors. A fine thermocouple and an ion current probe were respectively used to measure the flame temperature profile and the reaction behaviors of the combustion zone. Based on the experimental results, combustion behaviors and flame microstructures in dust clouds with different thermal characteristics were analyzed in detail. As a result, it was found that the dust flame surfaces were completely covered by cellular structures that significantly increased the flame frontal areas. Flame propagated more quickly and the number of the cellular cells increased as increasing the volatility of the particles. On the contrary, maximum temperature and the thickness of the preheated zone decreased as increasing the volatility of the particles. According to the ion current profile, the particles in the preheat zone were pyrolyzed to intermediate radicals and the radicals' fraction in the higher volatile dust flame was higher than that in the lower volatile dust flame.  相似文献   

13.
    
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

14.
    
Based on FLUENT simulation software, the laws of transmission of flame and pressure wave in pipeline gas explosion were studied. It turned out that, the maximum pressure value of the explosion point is not the maximum value of the whole explosion process; the maximum pressure value of the pressure wave lowers firstly near the explosion point, then rises to a peak, and then drops gradually; two waves divide the space in the pipeline into three sections during the gas explosion transmission. The result is basically consistent between numerical simulation and experiment, and the conclusion from the simulation provides theoretical basis for research on explosion-proof and suppression devices for underground gas pipeline, as well as for technical regulations of installation.  相似文献   

15.
吴航  邱水来  宋磊  胡源 《火灾科学》2022,31(2):76-84
为满足5G电子封装材料的性能需求,将一定量的改性中空玻璃微珠(f-HGM)和氮化硼(f-BN)添加进加成型液体硅橡胶中制备了低介电、高导热且阻燃的硅橡胶复合材料。测试结果表明,添加了10份f-HGM和15份f-BN的复合材料的介电常数为2.68,介电损耗为0.008 16,显著低于纯硅橡胶,热导率为0.518 W/m·K,是纯硅橡胶的2.25倍。此外,复合材料的热稳定性得到了提升,pHRR和THR分别下降了55.3%和37.7%。通过气相和凝聚相分析发现,复合材料的气相热解产物浓度大幅降低,残炭的致密性和连续性得到显著提升。  相似文献   

16.
Safety studies for production and use of hydrogen reveal the importance of accurate prediction of the overpressure effects generated by delayed explosions of accidental high pressure hydrogen releases. Analysis of previous experimental work demonstrates the lack of measurements of turbulent intensities and lengthscales in the flammable envelope as well as the scarceness of accurate experimental data for explosion overpressures and flame speeds. AIR LIQUIDE, AREVA STOCKAGE ENERGIE and INERIS join in a collaborative project to study un-ignited and ignited high pressure releases of hydrogen.The purpose of this work is to map hydrogen flammable envelopes in terms of concentration, velocity and turbulence, and to characterize the flame behaviour and the associated overpressure. These experimental results (dispersion and explosion) are also compared with blind FLACS modelling.  相似文献   

17.
路长  王小康  刘洋  王鸿波 《火灾科学》2018,27(3):174-180
为实现主动抑制瓦斯爆炸,研制了高速抑爆响应系统。选用尺寸为150mm×150mm×1 600mm的有机玻璃管道,在CH4体积分数为9.5%的条件下进行响应系统测试实验。系统采用火焰传感器进行爆炸火焰探测,通过所设计的程序自主判定瓦斯爆炸的发生并输出控制电信号,以继电器或MOS管为电路控制开关,通过电磁阀控制抑爆剂的喷出。实验结果表明,火焰传感器探测、信号采集、爆炸判断、输出电信号的总平均耗时为22ms,抑爆剂开始释放的平均时刻为59.8ms,抑爆剂释放到管道顶端的平均时刻为79.8ms。而爆炸火焰传播到达喷头所在1.0m处平均时刻为176.2ms。实验表明该系统具有高速主动抑爆响应功能和良好的稳定性、可靠性。  相似文献   

18.
    
We present an approach for predicting the lower flammability limits of combustible gas in air. The influence of initial pressure and temperature on lower flammability limit has been examined in this study. The lower flammability limits of methane, ethylene and propane in air are estimated numerically at the pressure from one to 100 bar and the temperature from ambient to 1200 K. It was found that the predicted LFLs of methane, ethylene and propane decrease slightly with the elevated pressure at the high temperature. The LFLs variation for methane-air mixture is 0.17, 0.18, 0.18 volume% with the initial pressure from one to 100  bar at the initial temperature of 800 K, 1000 K and 1200 K respectively, which is significantly higher than that at lower temperature. And the LFL of methane-air mixture at 1200 K and 100 bar reaches 1.03 volume% which is much lower than that at 1 bar and ambient temperature. On the other hand, the LFLs variation is 0.11–0.12 volume% for ethylene-air mixture and 0.06–0.07 volume% for propane-air mixture with the initial temperature from 800 K to 1200 K at the same range of pressure. The LFL values at high temperatures and pressures represent higher risk of explosion.  相似文献   

19.
    
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

20.
Explosions are the main types of accidents causing casualties in underground coal mines. Research on the mechanisms of gas explosions is needed as a basis for the development of techniques and strategies for explosion prevention, suppression, and mitigation. The prevention of loss in explosion accidents and inquiries into their causes require understanding of the explosion process of methane in air. Because of the high cost and safety issues in full scale experiments, the experiments with small scale ducts have become a key alternative approach. Whether the experimental results at small scales agree with those at full scales needs to be investigated to validate the significance of the experimental results at small scale. Numerical simulation was used to obtain the explosion characteristics of a methane-air mixture in a gallery or duct. If the grid size is too fine in the numerical simulation for a methane-air explosion it is difficult to calculate using the present computer resource. If the grid size is too coarse, the considerable error may result. The effect of grid size on results of calculation depends on the scenario being investigated. The effect of grid sizes on simulation accuracy was analyzed in this work. The overpressure and temperature distributions and the flame propagation for the deflagration of methane-air mixtures in a gallery or duct were obtained by the AutoReaGas code at three different scales. The geometry of investigated objects and the grids in the calculation domain were similar in the three cases. The calculated overpressures vary with the scale. The calculated temperatures do not vary with the scale for the three cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号