首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine toxins generated by harmful algal blooms can be transferred through the marine food web and ultimately cause massive deaths of piscivorous predators. However, very few studies have explored the processes of accumulation and biotransformation of paralytic shellfish toxins (PSTs) within fishes. White seabream (Diplodus sargus) were orally challenged with contaminated cockles (Cerastoderma edule) containing N-sulfocarbamoyl and decarbamoyl toxins and non-contaminated cockles afterwards. Specific PSTs that occurred in low abundance in cockles (B1 7.6% and dcSTX 1.6% molar fraction) were the only toxins detected in fish viscera possibly resulting from selective elimination and transformation of the various PSTs. Concentration of toxins progressively increased in fish viscera throughout the uptake period. Toxins were then rapidly depurated (B1 0.905 day−1, dcSTX 0.467 day−1) when diet was changed to non-toxic cockles. Results indicate conversion of a precursor toxin into B1 which in turn might be converted into dcSTX at a lower extent. Low accumulation efficiency of 1.7 and 5.0% was calculated to B1 and dcSTX, respectively. This study contributes to a better understanding of dynamics of PSTs in fish and the fate of these compounds in the marine food web.  相似文献   

2.
Juvenile Pacific giant lions-paw scallops Nodipecten subnodosus were fed the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison (PSP), supplied with Isochrysis galbana (a nontoxic microalgae). Short-term (<24 h) experiments were performed to determine clearance and ingestion rates of G. catenatum. Kinetics of PSP was examined in longer-term experiments (>2 days). At high food concentrations, juvenile scallops showed production of pseudofeces, partial shell valve closure, and reduction in feeding. According to HPLC analysis, the only toxins present in the dinoflagellate G. catenatum and in the scallops were the gonyautoxins (GTXs), except in the labial palps and digestive gland, where trace amounts of saxitoxin (STX) were present in scallops. These tissues could play an important role in toxin biotransformation. The ranking of toxin concentration in tissues was: digestive gland > labial palps > intestine > gills > mantle > adductor muscle, where the total contribution of viscera was more than 80% of the total toxin body burden. Juvenile scallops exhibited no apparent detrimental physiological responses during the long-term feeding experiment. The dinoflagellate may contribute nutrients to the scallop, in addition to the microalgae I. galbana. The dinoflagellate may enhance cell uptake and byssus production. Once PSP accumulated during the first 12 days, it was slowly eliminated. The limited capacity for accumulating toxins in the adductor muscle favors domestic marketing of scallops.  相似文献   

3.
Intertidal endobenthic bivalves are often dislodged from sediments by hydrodynamic forces. As a result, they encounter the dangers of predation and desiccation, which are generally harsh near the sediment surface. To cope with such dangers, the bivalves possibly possess: (1) a strong body to endure predation and desiccation stress, (2) quick mobility to avoid the stresses, or (3) a high growth rate for attaining a size refuge. The present study examined which of these modes are adopted by the subtropical cobbled-shore Venus clams Gafrarium tumidum (Röding, 1798) and Ruditapes variegatus (Sowerby, 1852), revealing the following interspecific differences. (1) G. tumidum survived better than R. variegatus did in harsh experimental conditions, namely: the experimental cages exposed to predation and desiccation on a cobbled shore; a laboratory aquarium with a predatory crab Scylla serrata; and ovens with high temperatures (27°C and 34°C). (2) R. variegatus was more mobile than G. tumidum was, digging into the sediment on a cobbled shore more rapidly at both high and low tides. (3) The two species with shell lengths 20–30 mm showed similar growth rates (median: –0.2 to 44.5 m day–1) in seasonal mark–recapture surveys over 2 years. Overall, to cope with the dangers of predation and desiccation G. tumidum appears to have a strong body, while R. variegatus displays rapid mobility, and neither species seems to attain a size refuge through rapid growth. Such species-specific modes are discussed in relation to the interspecific differences found in shell morphology.Communicated by T. Ikeda, Hakodate  相似文献   

4.
Multilocus allozyme heterozygosity (MLH) has been positively correlated with growth in some marine bivalves and was suggested to facilitate swimming activity in pectinids. Using two highly mobile scallops, Placopecten magellanicus and Argopecten purpuratus, we examined escape response performance and morphometric characteristics as a function of allelic variability at metabolic loci. Ten allozyme systems were used for A. purpuratus and 7 for P. magellanicus. In each species, the morphometric characteristics and escape response parameters were analyzed separately using principal components analysis (PCA) and the scores of the major principal components were related to allozyme heterozygosity. In both P. magellanicus and A. purpuratus, positive correlations were found between MLH and morphometric parameters, but escape response parameters were only positively linked to MLH in P. magellanicus, and then weakly. The hypothesis that MLH improves fitness of pectinids by increasing the capacity to escape predators is not supported.  相似文献   

5.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

7.
This is the first study of the West Greenland offshore population of Pandalus borealis in recent history that covers all larval stages. Shrimp larvae were sampled on the fishing banks off the west coast of Greenland from 63.5°N to 67°N in May, June and July. Abundances decreased during the summer as did cumulated mortality rates [0.06 day–1 (ZI) to 0.04 day–1 (ZVI)]. Modelling stage development time as a function of temperature alone by means of the Blehrádek function gave decreasing stage durations from 22.7 to 16.7 days. Drift buoys showed a northbound current with an average velocity of 0.06 m s–1. Potential spawning grounds of shrimp larvae were located from back-calculation by coupling development times and mortality rates with current velocity. This showed larval transport of up to 500 km. The adult female shrimp abundances were estimated to 0.12–96 females per 100 m2, and locations of the estimated spawning stock agreed with observations from trawl surveys.Communicated by L. Hagerman, Helsingør  相似文献   

8.
Although mysids play important roles in marine food chains, studies on their production are scarce, especially for warm-water species. We investigated life history and production of Orientomysis robusta in a shallow warm-temperate habitat of the Sea of Japan. Its spawning and recruitment occurred throughout the year; 19 overlapping cohorts were recognizable over an annual cycle. The summer cohorts recruited in July–September exhibited rapid growth, early maturity, small brood size, and small body size. A converse set of life history traits characterized the autumn–winter cohorts recruited in October–March. The spring cohorts recruited in April–June had intermediate characteristics of both cohorts. Life spans were 19–33, 21–48, and 69–138 days for summer, spring, and autumn–winter cohorts, respectively, and mortality rates were high for spring and summer cohorts, especially during June–August but were low for autumn–winter cohorts. Production calculated from the summation of growth increments was 488.8 mg DW m−2 year−1 with an annual P/B ratio of 21.26. The short life span seems to be responsible for such an extremely high P/B ratio. A method not requiring recognition and tracking cohorts gave similar values (534.0 mg DW m−2 year−1 and 20.49). The close agreement in production values between the two methods indicates our estimates are valid.  相似文献   

9.
Hatchery rearing of the scallop Argopecten purpuratus has resulted in successive generations of scallops not exposed to predators that are less sensitive to and escape more slowly from predators than wild scallops. The present study examined whether conditioning hatchery-reared A. purpuratus to its natural predator, the sea star Meyenaster gelatinosus, improved its escape responses. Both juvenile and adult A. purpuratus from Tongoy Bay, Chile, were exposed for 7 days to different conditions: (1) continuous predator odor, (2) predator contact for 30 min three times a day, (3) a combination of the two previous conditions, and (4) no exposure to the predator (control). After conditioning, we evaluated scallop’s escape responses: reaction time, total clap number, duration of the clapping response, clapping rate, and the time scallops spent closed when exhausted. Conditioning with contact and odor plus contact (i.e., high predation risk) resulted in 25 and 50% shorter reaction times of juveniles and adults, respectively. Further, these stimuli caused juveniles to increase the number of claps and clapping rate. For adults, the time spent closed after exhaustion decreased by 50 and 63% after conditioning with contact and odor plus contact, respectively. Therefore, it is shown for the first time that exposure of scallops to increasing predator stimuli enhances escape responses, evidence of threat-sensitive predator avoidance.  相似文献   

10.
Urastoma cyprinae is a species infecting the gills of several marine bivalves. Although there is some literature on this turbellarian, its life cycle remains unknown. In our work we have demonstrated that reproduction of U. cyprinae can be completed out of its host. More than 50% of turbellarians isolated from mussels (Mytilus galloprovincialis) secreted and cemented a cocoon to the well bottom during the first 72 h of incubation in seawater (34 salinity) at 14°C. Oviposition started at days 1–18 (average 4.8 days) and occurred in most cases inside the protective cocoon. Each Urastoma laid an average of 2.9 egg capsules (range 1–10) and 3.9 embryos were developed inside each egg capsule (range 1–11). Hatching started at days 20–43 (average 24 days). An average of 12.8 juvenile forms (range 1–64) escaped from the cocoon after hatching. The free-swimming juveniles showed a positive phototactic response and survived about a month after hatching. On the basis of our results, we propose a life cycle for U. cyprinae involving a sexual maturation parasitic period in the bivalve gills and a reproduction period including cocoon secretion, egg laying, and hatching that is entirely completed in the external environment.Communicated by S.A. Poulet, Roscoff  相似文献   

11.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

12.
In November 2003, we first observed prevalent occurrence of a hydroid, Eutima japonica, on soft body tissues of age zero Japanese scallop (Mizuhopecten yessoensis) juveniles cultured in large areas of Funka Bay, Hokkaido. The occurrence coincided with massive death of juvenile scallops. A major objective was to clarify ecological relationships between the symbionts, and to infer the relationship between symbiosis and the massive mortality. To do this, we investigated distributions of association rates of hydroids with juvenile scallops at 15–34 sites over 3 years (2003–2005), with age one adult scallops at 24 sites in 2003, and with mussels at 13 sites in 2004. We studied seasonal changes in association rates with juvenile scallops, and numbers of polyps per juvenile scallop at three sites from November 2003 to June 2004. We also quantified the hydroid impacts on juvenile scallop shell length growth and triglyceride accumulation in the digestive gland. The association rate of E. japonica polyps with juvenile scallops was high in large areas of Funka Bay in 2003, and overlapped the distribution of mussels bearing polyps. Association rates with age one adult scallops were very low in November 2003, even at the sites where polyps were very common on juvenile scallops. Levels of hydroid occurrence in juvenile scallops varies by year. We found that hydroids presence in juvenile scallops declined drastically in 2004 and 2005. The association rates with juvenile scallops, and numbers of polyps per juvenile scallop declined during winter, until they disappeared completely in the following June. Since polyps were rare in adult scallops, we believe that infection of juvenile scallops was probably initiated from the planulae produced by medusae released from polyps growing on Mytilus spp., especially M. galloprovincialis. Subsequently, the inhabitation spread intraspecifically and interspecifically. In juvenile scallops, inhabitation of polyps reduced shell length growth by 43%, and triglyceride accumulation in digestive glands by 24–47%. Inhabitation of E. japonica on juvenile scallop is best regarded as parasitism, rather than inquilinism or commensalism. Occurrence of polyps was probably not a direct lethal factor for juvenile scallops, because there were some sites where association rates were high, but mortalities were low. Massive mortalities in 2003 may have resulted from simultaneous impacts of heavy polyp load and stresses caused by the way in which the animals were handled (transferred from cages for pre-intermediate culture to cages for intermediate culture), because the massive mortality occurred within a month of the transfer. The presence of polyps in juvenile scallops does not affect the quality of the product in Funka Bay, because market size scallops are hydroid-free.  相似文献   

13.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

14.
Herring (Clupea harengus pallasi) spawning sites in Puget Sound, Washington overlap spatially and temporally with blooms of Alexandrium catenella, a toxic dinoflagellate species responsible for paralytic shellfish poisoning. Consequently, newly hatched herring larvae may be regularly exposed to the suite of dissolved paralytic shellfish toxins that are released into the water column from toxic cells during blooms. To date, virtually nothing is known about the impacts of these neurotoxins on early developmental stages of marine fish. In the present study, herring larvae at three ages, 0 days post hatch (dph), 4 dph, and 11 dph, were exposed to dissolved saxitoxin (STX) in 24-h and multi-day exposures. All larvae were examined for sensorimotor function (i.e. spontaneous swimming behavior and touch response). Significant reductions in spontaneous and touch-activated swimming behavior occurred within 1 h of exposure. EC50s at 1 h of exposure were 1,500, 840, and 700 μg STX equiv. l−1 for larvae introduced to STX at 0, 4, and 11 dph, respectively. This progressive age-specific increase in STX-induced paralysis suggests that older larvae were more sensitive to the toxin than younger larvae. Interestingly, herring larvae at all ages exhibited a significant degree of neurobehavioral recovery within 4–24 h of continuous exposure relative to the 1-h time point. This recovery of normal motor behaviors was not observed in previous studies with freshwater zebrafish (Danio rerio) larvae under the same continuous exposure conditions, suggesting that an adaptive detoxification or toxin sequestration mechanism may have evolved in some species of marine fish larvae. Our data reveal that (1) dissolved STX is bioavailable to marine finfish larvae, (2) the toxin is a paralytic agent with potencies that differ between developmental stages, and (3) STX-induced sensorimotor inhibition occurs rapidly but is transient in marine larvae. Collectively, these results suggest that dissolved algal toxins may have important sublethal effects on marine fish populations.  相似文献   

15.
The known negative effects of shellfish toxin-producing dinoflagellates on feeding, burrowing and survival of some bivalve mollusks has prompted questions concerning whether they might also impair the internal defense system of affected bivalves and make them more susceptible to disease agents. The primary components of the cellular defense system are hemocytes. Many toxic dinoflagellates are too large to be ingested whole by hemocytes and would most likely be exposed to intracellular toxins only after the algae are consumed, broken down, and the water-soluble toxins, released. Therefore, we conducted a series of experiments in which hemocytes from two suspension-feeding bivalves—the Manila clam, Ruditapes philippinarum, and the softshell clam, Mya arenaria—were exposed in vitro to filtered extracts of one highly toxic paralytic shellfish toxin (PST)-producing and one nonPST-producing strain of Alexandrium tamarense (isolates PR18b, 76 ± 6 STXeq cell−1 and CCMP115, with undetectable PST, respectively). We measured adherence and phagocytosis, two hemocyte attributes known to be inhibited by bacterial pathogens and other stressors. We found no measurable effect of a cell-free extract from a highly concentrated suspension of the PST-producing strain on hemocytes of either bivalve species. Instead, extract from the nonPST-producing strain had a consistent negative effect on both clams, resulting in significantly lower adherence and phagocytosis compared to strain PR18b and filtered seawater controls. The bioactive compound produced by strain CCMP115, which has yet to be characterized, may be similar to the PST-independent allelopathic compounds described for Alexandrium spp., which act on other plankters. These compounds and those produced by other harmful algae are known to cause immobilization, cellular deformation and lysis of co-occurring target organisms. Thus, nonPST producing Alexandrium spp., which do not cause paralysis and burrowing incapacitation of clams, may still produce a compound(s) that has negative effects not only on hemocytes, but on other molluscan cell types and their functions, as well.  相似文献   

16.
The gastropod Ilyanassa obsoleta (Say) is native to the east coast of North America where it is locally abundant on sandflats, mudflats, and in saltmarsh creeks. The local disturbances created by snails and their movements affect soft-sediment community composition. Movements of individually marked snails were followed on an intertidal sandflat on Cape Henlopen, Delaware, U.S.A. In June 1991, 1,200 snails that had tested as trematode-uninfected were released and over 5 months 554 were sighted 971 times. Mean daily net distance moved was 1.7 m, but snails often moved 10–20 m day−1 and one snail was 180 m distant after 130 days. Net dispersal of the released population was attained in ≈10 days, by which time, a typical distance from release was 15–20 m. Snails were not found crossing sandbars and most moved away from shore into a tidal gully. In June 1993, 500 snails, both uninfected and trematode-infected, were released at the same position and over 6 months, 350 snails were sighted 949 times. Sandbars were again barriers to movement, but their changed positions allowed wider dispersal. Net dispersal was complete in ≈20 days by which time a typical distance from release was 30–40 m. Mean daily net distance moved was 2.2 m, but within 10 days snails had moved 50–100 m. In both years, following initial dispersal, snails (infected or not) took up random directions from move to move. Infected and uninfected snails dispersed equal distances, but had different mean final dispersal directions. Dispersal of I. obsoleta individuals was extensive and affected by shifting sandbar positions and parasitism. Recognizing this will be important in appreciating the ecological dynamics of this gastropod and in determining its effects on soft-bottom communities.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
The scaling of metabolic rates with body mass is one of the best known and most studied characteristics of aquatic animals. Herein, we studied how size is related to oxygen consumption, ammonia excretion, and ingestion rates in tropical (Octopus maya) and cold-water (Enteroctopus megalocyathus) cephalopod species in an attempt to understand how size affects their metabolism. We also looked at how cephalopod metabolisms are modulated by temperature by constructing the relationship between metabolism and temperature for some benthic octopod species. Finally, we estimated the energy balance for O. maya and E. megalocyathus in order to validate the use of this information for aquaculture or fisheries management. In both species, oxygen consumption and ammonia excretion increased allometrically with increasing body weight (BW) expressed as Y = aBW b . For oxygen consumption, b was 0.71 and 0.69 for E. megalocyathus and O. maya, respectively, and for ammonia excretion it was 0.37 and 0.43. Both species had low O/N ratios, indicating an apparent dependence on protein energy. The mean ingestion rates for E. megalocyathus (3.1 ± 0.2% its BW day−1) and O. maya (2.9 ± 0.5% its BW day−1) indicate that voracity, which is characteristic of cephalopods, could be independent of species. The scope for growth (P = I − (H + U + R) estimated for E. megalocyathus was 28% higher than that observed in O. maya (320 vs. 249 kJ day−1 kg−1). Thus, cold-water cephalopod species could be more efficient than tropical species. The protein and respiratory metabolisms of O. maya, E. megalocyathus, and other octopod species are directly dependent on temperature. Our results offer complementary evidence that, as Clarke (2004) stated, the metabolic response (R and U) cannot be determined mechanistically by temperature, as previously proposed (Gillooly et al. 2002).  相似文献   

18.
Growth and feeding activities of the tintinnid ciliate Favella taraikaensis fed the toxic dinoflagellate Alexandrium tamarense were examined in laboratory experiments. Both growth and ingestion rates of F. taraikaensis as a function of the A. tamarense concentration were fitted to a rectangular hyperbolic equation. The maximum growth and ingestion rates of F. taraikaensis were 1.0 day–1 and 2.8 cells ind. h–1 (carbon specific ingestion rates: 3.5 day–1), respectively, which are both included in the range of previous data reported for Favella spp. feeding on other algae. The gross growth efficiency (GGE) of F. taraikaensis ranged from 0.26 to 0.49 (mean value 0.40) at the concentration of 10–800 cells ml–1, which is within the range of previous data on Favella spp. Also, the growth and ingestion rates and GGE of F. taraikaensis on A. tamarense were not significantly different from the values on another non-toxic dinoflagellate (Heterocapsa triquetra) at two different prey concentrations. This indicates that the toxicity of A. tamarense probably did not influence the feeding and growth activities of F. taraikaensis at concentrations of less than ca. 800 cells ml–1. To evaluate the grazing by F. taraikaensis on A. tamarense blooms in the field, the population dynamics of A. tamarense were simulated based on the growth and ingestion parameters of F. taraikaensis. As a result, the grazing impact by F. taraikaensis was considered to potentially regulate the development of A. tamarense blooms. If the toxicity of A. tamarense does not influence the growth and feeding activities of F. taraikaensis, the occurrence of such grazer plankton are considered to be important for predicting the course of A. tamarense bloom dynamics under natural conditions.Communicated by T. Ikeda, Hakodate  相似文献   

19.
Life history and reproductive strategies influence population dynamics at the inter- and intra-specific level. Environmental conditions suitable for gonad development and spawning, the reproductive range, may be a smaller portion of the broader species distribution. The only known breeding population of veined rapa whelks (Rapana venosa) in North America is in Chesapeake Bay, USA. There is considerable interest in the potential reproductive range of this non-indigenous species given the rapa whelk’s negative impacts on commercial shellfish species in both its native and introduced ranges. Weight-specific reproductive output is described for wild caught Chesapeake Bay rapa whelks maintained in flow-through mesocosms for 2 years. Measured reproductive output within and between egg capsule deposition seasons (years) in relation to water temperature, salinity, daylength, and female size is used to describe the rapa whelk’s reproductive range. Egg capsule production is influenced by seasonal and absolute water temperatures as well as seasonal daylength cycles. Egg capsule deposition by Chesapeake Bay rapa whelks begins at water temperatures of approximately 18°C and continues for 11–15 weeks. Forty to 70% of female whelks deposited egg capsules in most weeks during this season, producing 150–200 egg capsules female−1 week−1. Water temperatures >28°C caused reduced egg capsule production relative to temperatures of 20–25°C. Egg capsule production was positively related to seasonal changes in daylength, and two peaks of egg capsule deposition were observed in the 2001 and 2002 deposition seasons. The combination of declining daylength and higher water temperatures in late summer was associated with the cessation of egg capsule deposition. A lower average weight specific reproductive output in 130–145 mm SL rapa whelks (average 12 ± 1%) than in 90–106 mm SL rapa whelks (average 22 ± 1% of body weight) may reflect a life history that balances the physiological costs of maintaining a large body mass with the production of many planktonic larvae from multiple clutches of egg capsules per breeding season over a 10–15-year lifespan. Estimates of the cumulative day-degree requirements corresponding to the annual initiation of egg capsule deposition were 238 and 236 for 2001 and 2002, respectively. Reproductive output and day-degree requirements for Chesapeake Bay rapa whelks were similar to values calculated from previous studies of native muricids (Eupleura caudata and Urosalpinx cinerea). A latitudinal range of 30–41° (N and S) is predicted as the realized reproductive range for rapa whelk populations on the basis of the day-degree requirements for native whelks and reproductively active invasive rapa whelk populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Ingestion of bivalve larvae by Mytilus edulis was investigated. Laboratory experiments revealed that ~ 90% of bivalve larvae offered to mussels was ingested and apparently fully digested. The shell of the bivalve larvae offered no protection against digestive processes, resulting in high larval mortality once inside the stomach. Stomach content analysis (September 2001–January 2003) showed that bivalve larvae were ingested by farmed mussels year-round, with the exception of March 2002. Numbers of ingested larvae were highest in October 2001 and May 2002, which coincides with known spawning times of farmed mussels in Ireland. Mussels ingested a large size-range of bivalve larvae, suggesting that all stages of the bivalve life cycle are vulnerable to predation. It is suggested that adult bivalves routinely filter larvae from the surrounding water and that, given the high biomass of mussels present in mussel farms, filtration by adult bivalves significantly reduces numbers of bivalve larvae in nearby waters.Communicated by J.P. Thorpe, Port Erin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号