首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snails, Thais haemostoma, were collected from two areas offshore in Pensacola Bay, Florida, near an onshore hazardous-waste site. Tissue from the snails was extracted to isolate the lipophilic compounds and analyzed by gas chromatography/mass spectrometry. Along with naturally occurring compounds, the snail tissue contained large concentrations of polycyclic aromatic compounds, such as phenanthrene, acridine, dibenzothiophene, dibenzofuran, and benzo[a]pyrene. Many of these compounds were characteristic of creosote contamination associated with the onshore hazardous-waste site.  相似文献   

2.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

3.
The purpose of this study was to investigate the effect of temperature on the release of polycyclic aromatic hydrocarbons (PAHs) from aged contaminated soil. The release of fluorene, phenanthrene, anthracene, fluoranthene and pyrene at 7, 15, 18 and 23 degrees C was studied using a column leaching method with a hydraulic retention time of 0.5 h. As the temperature declined from 23 to 7 degrees C the concentrations decreased by a factor of 11-12 for all the studied compounds except for anthracene, which only decreased by a factor 7. Rate constants at maximum release rate at the four studied temperatures were assessed. From temperature dependence studies, apparent activation energies of desorption, E*(des), were calculated. E*(des)-values appeared to be in the range of 105-137 kJ mol(-1) for the studied PAHs and increased with the LeBas molar volume of the compounds. The increase of E*(des) with increased molecular size indicates stronger sorption with increased hydrophobicity of the compounds.  相似文献   

4.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

5.
Halogenated flame retardants have a high sorption affinity to particles, making soils and sediments important sinks. Here, three of the most commonly used flame retardants have been tested for sub-lethal toxicity towards soil nitrifying bacteria, a terrestrial plant (seed emergence and growth of the red clover, Trifolium pratense), and a soil invertebrate (survival and reproduction of Enchytraeus crypticus). Tetrabromobisphenol A (TBBPA) was quite toxic to enchytraeids, with significant effects on reproduction detected already at the 10 mgkg(-1) exposure level (EC(10)=2.7 mgkg(-1)). In contrast, decabromodiphenyl ether (DeBDE) was not toxic at all, and short-chain chloroparaffins (CP(10-13)) only affected soil nitrifying bacteria at the highest test concentration (EC(10)=570 mgkg(-1)). Exposure concentrations were verified by chemical analysis for TBBPA and DeBDE, but not for CP(10-13), as a reliable method was not available. Based on the generated data, a PNEC for soil organisms can be estimated at 0.3 mgkg(-1) for TBBPA and 57 mgkg(-1) for short-chain chloroparaffins. No PNEC could be estimated for DeBDE. Measurements of TBBPA in soil are not available, but measured concentrations in Swedish sludge are all lower than the estimated threshold value for biological effects in soil.  相似文献   

6.
先利用C-18固相萃取小柱富集大港油田港东联合处理站污水处理站的采油废水中16种多环芳烃(PAHs,即萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘、二苯并[a,h]蒽和苯并[g,h,i]苝),再用气相色谱/质谱(GC/MS)分析测定其浓度,以评价PAHs的去除率和生态风险。结果表明:(1)采油废水经处理后,COD、石油类去除率分别达到82.27%、91.06%;外排水COD、石油类达到《污水综合排放标准》(GB 8978—1996)一级标准要求,优于中国采油废水处理的一般水平。(2)采油废水主要以2、3环的PAHs为主,约占总量的93%以上。(3)苯并[a]芘超过《地表水环境质量标准》(GB 3838—2002)中限值。(4)处理前的采油废水中蒽、菲和苯并[a]芘具有一定的生态风险;处理后的外排水中萘、蒽、菲、荧蒽、苯并[a]芘的暴露浓度(PEC)/预测无效应浓度(PNEC)均小于1,目前尚未对环境造成威胁。但是8种PAHs(苊烯和苯并类PAHs除外)总和表现出较大的毒性,需要引起重视。  相似文献   

7.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

8.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

9.
Lassen P  Carlsen L 《Chemosphere》1999,38(13):2959-2968
The solubilizing effect of humic acids on fluorene and its NSO analogues carbazole, dibenzofuran and dibenzothiophene has been studied. The interaction between these substances and humic acids was found to depend significantly on the actual humic acid concentration. A pronounced decrease in the interaction constant, as well as in the water-organic matter partitioning coefficient was observed with increasing humic acid concentration. The effects are discussed in terms of concentration dependent macromolecular structural changes in the humic acids. A linear free energy relation for the interaction is suggested.  相似文献   

10.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

11.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   

12.
The concentrations of total polycyclic aromatic hydrocarbons (sigmaPAHs) and 15 individual PAH compounds in 20 surface sediments collected from four mangrove swamps in Hong Kong were analysed. sigmaPAH concentrations ranged from 356 to 11,098 ng g(-1) dry weight with mean and median values of 1992 and 1,142 ng g(-1), respectively. These values were significantly higher than those of marine bottom sediments of Hong Kong harbours, suggesting that more PAHs were accumulated in mangrove surface sediments. The concentrations of sigmaPAHs as well as individual PAH compound varied significantly among mangrove swamps. The swamps heavily polluted by livestock and industrial sewage, such as Ho Chung and Mai Po, had much higher concentrations of total PAHs and individual PAH than the other swamps. The PAH profiles were similar among four mangrove swamps, and were dominated by naphthalene (two-ring PAH), fluorene and phenanthrene (three-ring PAH). The mangrove sediments had higher percentages of low-molecular-weight PAHs. These indicated that PAHs in mangrove sediments might originate from oil or sewage contamination (petrogenic input). Ratio values of specific PAH compounds such as phenanthrene/anthracene and fluoranthene/ pyrene, were calculated to evaluate the possible source of PAH contamination in mangrove sediments. These ratios varied among samples, suggesting that mangrove sediments might have a mixed pattern of pyrolytic and petrogenic inputs of PAHs. Sediments collected from Ho Chung mangrove swamp appeared to be more dominated by pyrolytic input while those from Tolo showed strong petrogenic contamination.  相似文献   

13.
Wang D  Xu X  Chu S  Zhang D 《Chemosphere》2003,53(5):495-503
Chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) released from combustion of polyvinylchloride (PVC) at different furnace temperatures were investigated. A laboratory-scale tube-type furnace with electric heating was utilized to control combustion conditions. Glass fabric filters and adsorbents were used to collect the combustion emissions. Following Soxhlet extraction, concentration and column chromatography purification, isomers separation, selective detection and identification of Cl-PAHs were performed on GC/MS system on the basis of retention data and mass spectra. Their quantification was accomplished by using external standard calibration technique. About 18 Cl-PAHs were determined, most of which were monochlorinated derivatives of naphthalene, biphenyl, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. Only two dichlorophenanthrenes or anthracenes were identified. The possible positions of chlorine atoms attached to the aromatic rings are predicted by quantitative structure-property relationship. The levels of these compounds were in the range of 0.30-29.08 microg/g PVC. The relationship between the formation of Cl-PAHs and PAHs was discussed.  相似文献   

14.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

15.
The feasibility of a two-step treatment process has been assessed at laboratory scale for the remediation of soil contaminated with a model mixture of polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, pyrene, and fluoranthene). The initial step of the process involved contacting contaminated soil with thermoplastic, polymeric pellets (polyurethane). The ability of three different mobilizing agents (water, surfactant (Biosolve) and isopropyl alcohol) to enhance recovery of PAHs from soil was investigated and the results were compared to the recovery of PAHs from dry soil. The presence of isopropyl alcohol had the greatest impact on PAH recovery with approximately 80% of the original mass of PAHs in the soil being absorbed by the polymer pellets in 48 h. The second stage of the suggested treatment involved regeneration of the PAH loaded polymers via PAH biodegradation, which was carried out in a solid-liquid two-phase partitioning bioreactor. In addition to the PAH containing polymer pellets, the bioreactor contained a microbial consortium that was pre-selected for its ability to degrade the model PAHs and after a 14 d period approximately 78%, 62% and 36% of phenanthrene, pyrene, and fluoranthene, respectively, had been desorbed from the polymer and degraded. The rate of phenanthrene degradation was shown to be limited by mass transfer of phenanthrene from the polymer pellets. In case of pyrene and fluoranthene a combination of mass transfer and biodegradation rate might have been limiting.  相似文献   

16.
Biodegradation of phenanthrene in river sediment   总被引:5,自引:0,他引:5  
Yuan SY  Chang JS  Yen JH  Chang BV 《Chemosphere》2001,43(3):273-278
The aerobic biodegradation potential of phenanthrene (a polycyclic aromatic hydrocarbon [PAH]) in river sediment was investigated in the laboratory. Biodegradation rate constants (k1) and half-lives (t1/2) for phenanthrene (5 microg/g) in sediment samples collected at five sites along the Keelung River in densely populated northern Taiwan ranged from 0.12 to 1.13 l/day and 0.61 to 5.78 day, respectively. Higher biodegradation rate constants were noted in the absence of sediment. Two of the sediment samples were capable of biodegrading phenanthrene at initial concentrations 5-100 microg/g; lower biodegradation rates occurred at higher concentrations. Optimal biodegradation conditions were determined as 30 degreesC and pH 7.0. Biodegradation was not significantly influenced by the addition of such carbon sources as acetate, pyruvate, and yeast extract, but was significantly influenced by the addition of ammonium, sulfate, and phosphate. Results show that anthracene, fluorene, and pyrene biodegradation was enhanced by the presence of phenanthrene, but that phenanthrene treatment did not induce benzo[a]pyrene biodegradation during a 12-day incubation period.  相似文献   

17.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

18.
《Environmental Forensics》2013,14(3):191-197
To determine whether polycyclic aromatic hydrocarbons (PAHs) in household soot were derived from the combustion of scrap wood or creosote that was impregnated in the wood (or some combination of both), the molecular composition and radiocarbon ( 14 C) content of the total carbon and several PAHs in the soot was investigated. The 5730-year half-life of 14 C makes it an ideal marker for identifying creosote-derived PAHs ( 14 C-free) versus those derived from the combustion of wood (contemporary 14 C). The 14 C abundance of phenanthrene, fluoranthene, pyrene, and retene was determined by accelerator mass spectrometry after solvent extraction and purification by preparative capillary gas chromatography. The molecular analysis (presence of retene and 1,7-dimethylphenanthrene) and bulk 14 C content (contemporary) of the soot indicated that wood combustion was a strong source of carbon to the soot. The 14 C of retene in two soot samples was also contemporary, indicating that it was derived from the combustion of the scrap wood. These results are consistent with previous work that has suggested that retene is an excellent marker of wood combustion. However, the 14 C content of phenanthrene, fluoranthene, and pyrene in one soot sample was much lower and revealed that these compounds had a mixed creosote and wood source. Using an isotopic mass balance approach, we estimate that 40 to 70% of phenanthrene, fluoranthene, and pyrene were derived from the combustion of the scrap wood. The results of this study show that molecular marker and bulk 14 C analysis can be potentially misleading in apportioning sources of every PAH, and that molecular-level 14 C analysis of PAHs can be a powerful tool for environmental forensics.  相似文献   

19.
Removal of PAHs from water using an immature coal (leonardite)   总被引:1,自引:0,他引:1  
It has been studied an immature coal (leonardite) as an adsorbent for removing PAHs [fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene] from water. To determine the efficiency of leonardite as an adsorbent of PAHs, factors such as pH, contact time and equilibrium sorption were evaluated in a series of batch experiments. There were no significant differences in the removal percentages for the various pH values studied, except for fluorene. The adsorption of fluorene was higher at lower pH values. The equilibrium time was reached at 24h. At this time, more than 82% of the pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene had been removed. During the first 2h, the adsorption rate increased rapidly. After that time, however, there was a minor decrease. Equilibrium data were fitted to Freundlich models to determine the water-leonardite partitioning coefficient. Physical adsorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process. The polarity of the humic substances in leonardite may also have influenced the adsorption capacity.  相似文献   

20.
Shen G  Lu Y  Zhou Q  Hong J 《Chemosphere》2005,61(8):1175-1182
Actions and interactions of heavy metals (cadmium, zinc and plumbum) and polycyclic aromatic hydrocarbons (PAHs) [phenanthrene, fluoranthene, benzo(a)pyrene] on the soil urease and dehydrogenase activity were studied after 49 days exposure. The experimental approach was based on the uniform design which can cut the experiment time and improve the efficiency of experiments. Data treatment was essentially based on the multiple regression technique. The results showed that the action and interaction between heavy metals and PAHs were strongly dependent on the time of pollution. The dehydrogenase exhibits more sensitive to the combined pollution than urease. The negative interaction between Zn and Cd to hydrogenase activity and the combined stimulatory activity of Phenanthrene and Benzo(a)pyrene (or fluoranthene) to soil enzyme were observed. The interactions between Zn (Cd) and phenanthrene towards urease (dehydrogenase) were positive, and the interaction between Zn and benzo(a)pyrene to urease activity was negative. This study corresponds to exploratory phase in order to reveal interaction effects of heavy metals and PAHs on the soil enzyme and then to set up more in-depth analysis to increase progressively the understanding of the ecotoxicological mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号