首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of aeration rate on composting of penicillin mycelial dreg   总被引:2,自引:0,他引:2  
Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90 L/(min·kg) organic matter(OM) were examined. The principal physicochemical parameters were monitored during the 32 day composting period. Results showed that the higher aeration rate of 0.90 L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation;but the lower aeration rate of 0.15 L/(min·kg) did induce an accumulation of NH+4-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures ≥ 55°C, the maximum NO-3-N content and seed germination, and the minimum C/N ratio were obtained with 0.50 L/(min·kg) OM. Therefore, aeration rates of0.50 L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.  相似文献   

2.
短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生物的影响.结果表明,随着曝气量的增大,氨氧化速率不断升高.单位体积曝气量为0.8、1.7、3.3、5.0 L·min-1·L-1时,氨氧化率维持在50%左右,亚硝酸盐氮积累率稳定在99%以上,平均氨氧化速率分别为0.88、0.96、1.29和1.32 mg·L-1·min-1.高通量测序分析表明,不同曝气量条件下,反应器中好氧氨氧化菌的优势菌属均为Nitrosomonas,而亚硝酸盐氧化菌都被有效抑制,Nitrospira丰度很低.此外,检出AcidovoraxDenitratisomaHyphomicrobiumIgnavibacterium等多种反硝化细菌,这些反硝化菌能够与好氧氨氧化菌共同作用,使系统发生少量内源同步硝化反硝化.综合考虑曝气能耗和反应速率,曝气量为3.3 L·min-1·L-1时,可实现控制短程硝化工艺的低耗高效运行.  相似文献   

3.
采用间歇曝气在MBBR反应器中成功实现一段式部分硝化耦合厌氧氨氧化(PN/A)过程.结果表明,在实验温度为35℃,进水氨氮浓度为150.00mg/L,进水氮负荷为0.24kg/(m3·d),DO浓度为(1.41±0.24)mg/L条件下,反应器总氮去除效率达到83.74%.生物膜中厌氧氨氧化菌(AnAOB)和氨氧化菌(...  相似文献   

4.
利用SBR(序批式反应器)研究了不同ρ(NaCl)、曝气时间、ρ(CODCr)、进水ρ(NH4+-N)对AGS(好氧颗粒污泥)短程硝化反硝化的影响. 结果表明,在pH、温度和ρ(DO)为8.0、30 ℃和3 mg/L条件下,以及ρ(NaCl)、曝气时间、ρ(CODCr)和ρ(NH4+-N)为20 g/L、8 h、600 mg/L和70 mg/L时,ηA(NH4+-N去除率)和NAR(NO2--N积累率)达到最佳. 当进水ρ(NaCl)为10 g/L时,NOB(亚硝酸盐氧化菌)被完全抑制,AOB(氨氧化菌)能够保持正常活性. ρ(CODCr)较高时能够促进NAR的提高. 经过116 d的培养,AGS短程硝化反硝化的耐盐极限为50 g/L,此时ηA小于50%,AOB被严重抑制,AGS丧失硝化能力. AGS的同步硝化反硝化作用明显,SND(同步硝化反硝化率)平均值为24.2%,SNDV(同步硝化反硝化比速率)平均值为0.63 h-1,低ρ(DO)比高ρ(DO)下的SND同步硝化反硝化作用更为明显.   相似文献   

5.
试验采用序批式反应器(SBR)处理高氨氮废水,逐步提高废水氨氮(NH+4-N)浓度到800 mg·L-1,通过控制曝气量实现了短程硝化.SBR周期试验表明,在低溶解氧和高游离氨等共同作用下,氨氧化菌(AOB)活性较低,导致AOB以亚硝酸盐氮(NO_2~--N)作为电子受体进行好氧反硝化,氧化亚氮(N_2O)释放因子为9.8%.静态试验控制初始NH_4~+-N为100 mg·L-1且改变曝气量(0.22~0.88 L·min~(-1))条件下,溶解氧浓度的增加能够提高硝化菌活性,N2O释放因子为0.51%~0.85%.当初始NH_4~+-N浓度为100 mg·L~(-1)且曝气量控制在0.66 L·min-1时,初始NO-2-N浓度为0~100 mg·L~(-1)对硝化菌活性影响较小,N2O释放因子为0.50%~0.71%.当溶解氧和游离氨浓度控制在适宜范围内,可维持AOB较高活性,抑制AOB发生好氧反硝化作用,降低N2O释放率.  相似文献   

6.
本研究进水模拟了污泥消化液、晚期垃圾渗滤液等高氨氮低碱度低碳氮比的废水,在碱度缺乏(不足以实现完全短程硝化)条件下获得了稳定的半短程硝化,并通过曝气量和污泥浓度(MLSS)双因素调控,实现了半短程硝化的高效经济运行.研究表明,进水碱度缺乏条件下短程硝化体系出水亚硝氮/氨氮浓度比值y与进水HCO3-∶NH4+物质的量的比...  相似文献   

7.
生活污水常温处理系统中AOB与NOB竞争优势的调控   总被引:6,自引:4,他引:6  
曾薇  张悦  李磊  彭永臻 《环境科学》2009,30(5):1430-1436
常温(19℃±1℃)条件下,采用SBR工艺处理低碳氮比(C/N)实际生活污水,研究氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)竞争优势的调控,在接种全程硝化污泥的系统中使AOB成为优势菌群,启动并维持常温短程硝化.通过控制曝气量为40 L/h使系统溶解氧处于较低水平(DOaverage<1.0 mg/L),同时结合好氧硝化时间的优化控制,即在pH值“氨谷"点前及时停止曝气的短周期定时控制,强化AOB的竞争优势.待AOB的竞争优势初步形成后(亚硝酸盐积累率NO-2-N/NO-x-N达到50%),每周期曝气时间随着NO-2-N/NO-x-N的提高由3 h逐步延长至4 h、 5 h,从而提高NH+4-N去除率,进一步增强AOB在系统中的竞争优势,短程硝化成功启动,NO-2-N/NO-x-N稳定在95%以上.FISH检测结果表明AOB大约占总菌群的9.97%.在线控制好氧硝化时间可以很好地维持短程硝化效果,NH+4-N去除率达到97%以上.研究还表明,对于全程硝化污泥常温下如果不限制溶解氧,单纯依靠短周期定时控制无法使AOB成为优势硝化菌群.  相似文献   

8.
It is generally accepted that a low dissolved oxygen(DO) concentration is more beneficial for achieving partial nitrification than high-DO. In this study, partial nitrification was not established under low-DO conditions in an intermittent aeration reactor for treating domestic wastewater. During the operational period of low-DO conditions(DO: 0.3 ±0.14 mg/L), stable complete nitrification was observed. The abundance of Nitrospira-like bacteria, which were the major nitrite-oxidizing bacteria, increased from 1.03 × 10~6to2.64 × 10~6cells/m L. At the end of the low-DO period, the batch tests showed that high-DO concentration(1.5, 2.0 mg/L) could inhibit nitrite oxidation, and enhance ammonia oxidation. After switching to the high-DO period(1.8 ± 0.32 mg/L), partial nitrification was gradually achieved. Nitrospira decreased from 2.64 × 10~6 to 8.85 × 10~5cells/m L. It was found that suddenly switching to a high-DO condition could inhibit the activity and abundance of Nitrospira-like bacteria, resulting in partial nitrification.  相似文献   

9.
悬浮载体生物膜内硝化菌群空间分布规律   总被引:4,自引:1,他引:3  
王荣昌  文湘华  钱易 《环境科学》2006,27(11):2358-2362
利用16S rRNA寡核苷酸探针荧光原位杂交和共聚焦激光扫描显微镜联用技术,对悬浮载体生物膜内硝化菌群的空间分布规律进行了分析.试验采用3组结构完全相同的悬浮载体生物膜反应器,每个反应器的曝气区为6L,沉淀区为2L,水力停留时间为1.0h,3个反应器的进水COD/NH4+-N分别为15、10和5,从反应器中取出载体颗粒表面的生物膜进行分析,研究各反应器中生物膜的微生物群落结构的变化规律.结果表明,SCBR内载体表面生物膜的总体厚度在80~120μm左右,氨氧化菌和亚硝酸盐氧化菌主要分布在生物膜表面的20~30μm左右范围内.随着进水中COD/NH4+-N的增加,氨氧化菌和亚硝酸盐氧化菌在整个生物膜中所占的比例逐步下降.  相似文献   

10.
为强化城市污水短程硝化-厌氧氨氧化(SPNA)系统脱氮性能与稳定性,在间歇曝气条件下研究投加外源全程硝化污泥对城市污水SPNA系统的影响及机理.结果显示,空白组(SBR3)总氮去除率由35.5%升高至66.3%,短周期分批次投加外源全程硝化污泥(SBR2,投加周期为5d,投加比为2.5%)与长周期分批次投加(SBR1,投加周期为20d,投加比为10%)的SPNA系统总氮去除率分别由31.7%和36.5%升高至76.3%和67.2%,这表明,投加全程硝化污泥有利于提高SPNA系统的脱氮性能,且当投加总量相同时,短周期分批次投加的效果优于长周期分批次投加.功能菌活性结果与脱氮效果一致,SBR1~SBR3的厌氧氨氧化菌(AnAOB)最大活性分别由3.43mg-N/(L·h)升高至7.66,8.19和7.31mg-N/(L·h),氨氧化细菌(AOB)与亚硝酸盐氧化菌(NOB)活性比分别为8.79,9.83和8.78.在间歇曝气条件下投加全程硝化污泥,可选择性抑制NOB、富集AOB,提高AOB与NOB的活性比,利于稳定短程硝化效果,为AnAOB提供稳定的基质,且短周期分批次投加可降低外源硝化污泥...  相似文献   

11.
于濛雨  刘毅  田玉斌  石欢  徐富  杨宏 《环境科学》2017,38(7):2925-2930
为了提高包埋氨氧化细菌短程硝化的效率,富集培养氨氧化细菌(AOB)并固定化.富集培养阶段采用连续式运行方式,以游离氨(FA)为抑制亚硝酸盐氧化菌(NOB)生长的手段,并通过定时排泥方法使NOB逐渐从系统中淘洗出去.富集培养结束后以聚乙烯醇(PVA)为包埋材料,对筛选培养的氨氧化细菌进行固定化,反应器包埋填充率为8%.采用连续式运行方式,通过逐步增加氨氮负荷的方法提高氨氧化速率.最终在富集培养系统中实现了污泥比氨氧化速率(以NH_4~+-N/VSS计)2.028 g·(g·d)~(-1)的高表达和亚硝酸盐氮90%以上的高积累.通过对污泥富集培养前后细菌群落组成的高通量测序分析,结果表明,培养前原污泥多样性较大,具有硝化作用的Nitrosomonas仅有0.24%,Nitrospira有2.7%.富集培养后的活性污泥多样性明显变小,优势菌种为Nitrosomonas(18%),而Nitrospira仅剩0.02%;包埋固定化后,系统迅速实现了短程硝化,最终短程硝化的速率达到了50 mg·(L·h)~(-1),亚硝酸盐氮积累率稳定在90%以上.  相似文献   

12.
好氧亚硝化颗粒污泥中硝化细菌群落结构分析   总被引:8,自引:4,他引:8  
在小试好氧上流式污泥床(AUSB)反应器中,实现了由厌氧颗粒污泥到好氧硝化污泥再到亚硝化颗粒污泥的转化,AUSB反应器的亚硝化率稳定在90%以上.利用FISH、荧光实时定量PCR等技术,考察了AUSB反应器中好氧颗粒污泥中硝化菌群的生态分布.结果表明:好氧亚硝化颗粒污泥呈层状结构,氨氧化细菌(AOB)主要分布在颗粒污泥表层,亚硝酸盐氧化细菌(NOB)多分布在内层,颗粒内核则无活性细胞;随反应器氨氮负荷逐渐提高,颗粒污泥中AOB的相对含量逐渐升高,当NH3-N负荷分别为0、0.4、1、  相似文献   

13.
固定化硝化菌去除废水中氨氮工艺的研究   总被引:36,自引:2,他引:34  
采用聚乙烯醇-硼酸包埋固定化法,选用PVA为包埋载体,粉末活性炭作为无机载体,包埋固定A/O生物脱氮系统中的再经驯化过的硝化污泥,制成固定化硝化菌颗粒。  相似文献   

14.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)~(-1).由0. 125 L·(min·L)~(-1)逐渐降低至0. 025 L·(min·L)~(-1)]和好氧时间(由3 h逐渐延长至6 h),考察了SPNDPR系统的深度脱氮除磷性能.结果表明,当曝气量为0. 025 L·(min·L)~(-1)、好氧时间为6 h时,SPNDPR系统出水NH_4~+-N、NO_2~--N、NO_3~--N和PO_4~(3-)-P浓度分别为0、8. 62、0. 06和0. 03 mg·L~(-1);出水TN浓度约为9. 22 mg·L~(-1),TN去除率高达87. 08%.当曝气量分别由0. 125 L·(min·L)~(-1)降至0. 100 L·(min·L)~(-1)和由0. 100L·(min·L)~(-1)降至0. 075 L·(min·L)~(-1)时,系统硝化速率均能恢复并稳定维持在0. 16 mg·(L·min)~(-1)左右.但曝气量继续降至0. 050 L·(min·L)~(-1)和0. 025 L·(min·L)~(-1)后,硝化速率分别降至0. 09 mg·(L·min)~(-1)和0. 06 mg·(L·min)~(-1)左右.随着曝气量的降低[由0. 125 L·(min·L)~(-1)依次降至0. 100、0. 075、0. 050、0. 025 L·(min·L)~(-1)]和好氧时间的延长(由3 h延长至6h),SPND脱氮性能逐渐增强,SND率由19. 57%升高至72. 11%,TN去除率逐渐升高(由62. 82%升高至87. 08%).降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷.  相似文献   

15.
研究了ANAMMOX耦合异养反硝化反应器的启动过程,考察了苯酚浓度对耦合反应器脱氮性能的影响.接种2L(占反应器有效容积的20%)挥发性悬浮固体(MLVSS)为6000mg/L的ANAMMOX颗粒污泥,在pH7.8、温度为25℃、HRT为1.5h的条件下经过86d的培养,ANAMMOX耦合异养反硝化启动成功.实验结果表明,在稳定运行阶段,NH4+-N、NO2--N和TN平均去除率分别为85.4%、86.1%和79.9%,TN平均容积负荷和TN平均去除负荷分别为2.63,2.10kg/(m3·d);ANAMMOX颗粒污泥外面包裹着苯酚反硝化菌;系统内异养反硝化与ANAMMOX存在协同和竞争关系.当苯酚浓度≥0.3mmol/L时,ANAMMOX菌的活性受到很大抑制,苯酚浓度的升高加剧了苯酚反硝化菌与ANAMMOX菌之间的竞争;从脱氮效果及系统稳定两方面综合考虑,当苯酚浓度为0.2mmol/L时,耦合效果最好,消耗的NH4+-N、NO2--N与生成的NO3--N之比为1:1.52:0.11.  相似文献   

16.
An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population.  相似文献   

17.
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

18.
考察了温度变化对亚硝化颗粒污泥反应器的长期和短期影响特性,结果表明:在进水ρ(NH4+-N)为(35.8±5.2)mg/L、水力停留时间为2.0 h以及运行温度为7~17℃的条件下,反应器保持着95%的亚硝化率和0.18~0.25 kg/(m3·L)的NH4+-N去除负荷;反应器中较低的ρ(DO)∶ρ(NH4+-N)(<0.25)是实现亚硝酸盐氧化细菌(NOB)有效抑制的关键因素;长期低温运行造成颗粒污泥比NH4+-N氧化速率(SAOR)从(237±14)g/(g·d)下降至(93±11)g/(g·d),但颗粒污泥中氨氧化细菌(AOB)的活化率(实际SAOR与最大SAOR之比)从48%升至约85%。批式实验结果表明,在7.1~28℃的短时温度变化内,亚硝化颗粒污泥NH4+-N氧化反应的温度系数(θ)和活化能(Ea)分别为1.042~1.063,29.7~41.9 kJ/mol,均显著低于同等条件下絮体污泥的数值,表明颗粒污泥AOB比絮体污泥AOB具有更好的抗温度冲击能力。该研究结果可为基于颗粒污泥的高效城市污水亚硝化技术提供参考。  相似文献   

19.
本研究采用具有氨氮富集分离特性的阳离子交换膜-超滤(CEM-UF)组合膜与硝化/反硝化结合处理低C/N废水,考察该系统不同流量比下低C/N废水的硝化、反硝化脱氮特性,并通过对硝化、反硝化活性污泥进行16Sr DNA高通量测序,分析功能微生物群落结构特征.结果表明,系统进水TN为60 mg·L-1,COD/TN为2.65下,各流量比下硝化均有较好效果,平均氨氮去除率为98.7%,流量比值由1∶2上升到1∶6过程中,反硝化m(COD)/m(NO-3-N)随之升高,1∶6时平均硝氮去除率达到最高,为86.28%,系统总氮去除率由22.56%上升到46.8%.Illumina高通量测序结果表明,硝化污泥中可以固氮的Proteobacteria菌门占30.9%,重要的亚硝酸盐氧化菌Nitrospirae菌门占3.06%,属水平上检测到氨氧化菌(AOB)Nitrosomonas和Nitrosospira,亚硝酸盐氧化菌(NOB)Nitrospira和Nitrobacter,AOB与NOB菌比例较高,与硝化反应器中较好的硝化效果相一致.反硝化污泥中Proteobacteria菌门占主导地位(53.13%),其次是Bacteroidetes菌门(10.93%),在属的水平上检测到Dechloromonas、Thauera、Castellaniella、Alicycliphilus、Azospira、Comamonas、Caldilinea和Saccharibacteria多种具有反硝化脱氮作用的相关菌属,反硝化菌所占比例为25.91%,反硝化污泥中具有反硝化功能的微生物丰富,反硝化效果良好.  相似文献   

20.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号